簡易檢索 / 詳目顯示

研究生: 陳浩宇
Chen, Hao-Yu
論文名稱: 石墨烯透明電流擴散層應用於深紫外光發光二極體
Transparent Conductive Graphene Electrodes for UVC Light Emitting Diode
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 石墨烯氧化鎳直接成長電漿輔助化學氣相沉積深紫外光發光二極體
英文關鍵詞: graphene, NiO, direct growth, PECVD, UVCLED
DOI URL: https://doi.org/10.6345/NTNU202202273
論文種類: 學術論文
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯(graphene)為碳原子以六角型晶格所排列而成之二維材料,其具有低電阻率、高載子遷移率、良好之熱特性與機械特性等多項優點,其中於紫外光波段之高穿透率更被看好應用於深紫外光發光二極體(UVCLED)做為透明電流擴散層(TCE)之材料。然而,石墨烯與深紫外光發光二極體頂層材料之高接觸電阻率則為應用之最大障礙。
    本實驗中提出以原子層化學氣相沉積法(ALD)之氧化鎳做為緩衝層降低蕭特基位障以改善接觸性不良之問題。於石墨烯製程方面,本實驗使用電漿輔助化學氣相沉積法直接成長石墨烯於目標基板之技術,改善傳統低壓化學氣相沉積法之高溫製程與轉印製程之不利要素,使大面積量產石墨烯為可行。最終直接於頂層之p型氮化鋁鎵層成長出約五層厚度之石墨烯,並輔以氧化鎳做為緩衝層可達到低接觸電阻ρc = (4.29 ± 0.46) × 10-1Ω-cm2,於280 nm之透光性仍有50%穿透率,為有潛力取代銦錫氧化物(ITO)做為電流擴散層之材料。

    Graphene is a two-dimensional material in which the carbon atoms are arranged in a hexagonal lattice. It has many advantages such as low resistivity, high carrier mobility, good thermal properties and mechanical properties, among which the high transmittance in the UV region is more promising for use in deep ultraviolet light emitting diodes as the material of the transparent conductive electrode. However, the high contact resistivity of graphene and the top material of deep ultraviolet light-emitting diode is the largest obstacle to the application.
    In this experiment, we propose a method to reduce the Schottky barrier by using nickel oxide which is made by atomic layer chemical vapor deposition as a buffer layer to improve the poor contact. In the graphene process, this experiment usess the plasma-enhanced chemical vapor deposition to directly grow graphene on the substrate. The system improves the high-temperature process and transfer process of conventional low-pressure chemical vapor deposition, so that makes large area production of graphene be feasible. Finally, we directly grow about five layer graphene on the top of the the p-AlGaN layer. With the use of NiO as the buffer layer, we get the contact resistance is equal to (4.29 ± 0.46) × 10-1Ω-cm2 and have transmittance about 50% at 280 nm. This material has the potential to replace indium tin oxide (ITO) as a transparent conductive electrode.

    致謝 I 摘要 II 第一章 緒論 1 1.1 研究動機 1 1.2 石墨烯之發展歷程 3 1.3 石墨烯之基本特性 5 1.3.1 石墨烯之晶格與能帶結構 5 1.3.2 石墨烯之光學特性 6 1.3.3 石墨烯之熱傳導特性 8 1.3.4 石墨烯之機械特性 8 1.4 石墨烯之製備方法 9 1.4.1 機械剝離法 (MECHANICAL EXFOLIATION) 10 1.4.2 液相剝離法 (SOLUTION-BASED EXFOLIATION) 11 1.4.3 氧化石墨烯還原法 (REDUCTION OF GRAPHENE OXIDE) 12 1.4.4 電化學剝離法 (ELECTROCHEMICAL EXFOLIATION) 13 1.4.5 切割奈米碳管法 (UNZIPPING CARBON NANO TUBE) 14 1.4.6 固態碳源裂解法 (ORGANIC SYNTHESIS) 15 1.4.7 碳化矽生長法 (EPITAXIAL GROWTH ON SIC) 16 1.4.8 化學氣相沉積法 (CHEMICAL VAPOR DEPOSITION;CVD) 18 1.5 發光二極體(LIGHT EMITTING DIODE;LED) 20 1.5.1 發光二極體發展歷史 20 1.5.2 發光二極體之發光原理 21 1.5.3 藍光發光二極體 22 1.5.4 紫外光發光二極體 24 1.6 石墨烯應用於深紫外光發光二極體 25 1.6.1 電流擴散層材料之分析 26 1.6.2 電流擴散層材料之歐姆接觸 26 1.7 文獻回顧 29 第二章 實驗儀器介紹與樣品製備流程 37 2.1 低壓式化學氣相沉積之石墨烯製程儀器與參數 37 2.1.1 低壓式化學氣相沉積之石墨烯製程儀器介紹 37 2.1.2 低壓式化學氣相沉積之石墨烯製程參數 40 2.1.3 石墨烯之轉印製程介紹 43 2.2 電漿輔助化學氣相沉積之石墨烯製程儀器與參數 47 2.2.1 電漿輔助化學氣相沉積之石墨烯製程儀器介紹 48 2.2.2 電漿輔助化學氣相沉積之石墨烯製程參數 52 2.3 石墨烯/氧化鎳材料透明電流擴散層 54 2.3.1 原子層化學氣相沉積之氧化鎳 55 2.3.2 石墨烯/氧化鎳/UVCLED 接觸電性量測片之結構製程 57 2.4 量測儀器介紹 59 2.4.1 拉曼光譜儀 59 2.4.2 四點探針 61 2.4.3 圓形傳輸線模型 (CTLM) 62 2.4.4 分光光度儀 63 2.4.5 穿透式電子顯微鏡 (TEM) 63 2.4.6 能量色散X-射線光譜 (EDS) 63 第三章 實驗結果與討論 64 3.1 前導研究─石墨烯應用於藍光發光二極體 64 3.1.1 石墨烯之特性 64 3.1.2 緩衝層氧化鎳之效益 65 3.1.3 做為電流擴散層之接觸特性 66 3.2 化學氣相沉積轉印石墨烯與晶片之接觸特性量測 66 3.2.1 轉印之石墨烯特性量測 66 3.2.2 接觸電性量測結果分析 68 3.3 以電漿輔助化學氣相沉積直接成長石墨烯特性量測 69 3.3.1 直接成長石墨烯特性量測與分析 69 3.3.2 夾層石墨烯之驗證 72 3.4 直接成長石墨烯與晶片之接觸特性量測 75 第四章 結論 77 參考資料 78

    [1] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices”, Applied Physics Letters 74 (26), 0003-6951 (1999)
    [2] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics”, Nature Photonics 4, 611 - 622 (2010)
    [3] J. Yu, X. Zhao, Q. Zhao, “ Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films”, Journal of Materials Science Letters 19, 1015 – 1017 (2000)
    [4] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh & A. A. Sokol, “Band alignment of rutile and anatase TiO2”, Nature Materials 12, 798–801 (2013)
    [5] Y.J. Yu,Y. Zhao, S. Ryu,L.E. Brus, K.S. Kim, P. Kim, “Tuning the Graphene Work Function by Electric Field Effect”, Nano Letters,Vol. 9, No. 10,3430-3434(2009)
    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science 306 (5696), 666-669 (2004)
    [7] 張嵛,劉連慶,席寧,王越超,董再勵, “基於原子力顯微鏡的石墨烯可控裁剪方法研究”, SCIENTIA SINICA Physica, Mechanica & Astronomica , vol. 42, no. 4, 358-368(2012)
    [8] M.O. Goerbig,J.N. Fuchs,G. Montambaux,F. Pi´echon, “Massless Dirac fermions in the quasi-2D organic material α-(BEDT-TTF)2I3 under pressure”, [Online]. Available: https://www.equipes.lps.u-psud.fr/GOERBIG/Utrecht0809.pdf
    [9] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science 320 (5881), 1308-1308 (2008)

    [10] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphen”, Nano Letters 8 (3), 902-907 (2008)
    [11] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science 321 (5887), 385-388 (2008)
    [12] A. Ambrosi, C. K. Chua, A. Bonanni, M. Pumera, “Electrochemistry of Graphene and Related Materials”, Chem. Rev., 114 (14), pp 7150–7188 (2014)
    [13] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker , S. Seal, “Graphene based materials: Past, present and future” ,Progress in Materials Science,56, 1178–1271(2011)
    [14] H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, H. Zhong, J. Liang, M. Ren, “Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and the hydrogen storage/generation” ,  Advances in Colloid and Interface Science 195(2013)
    [15] Hummers Jr. W. S, Offeman. R. E, “Preparation of graphitic oxide.” , Journal of the American Chemical Society 80 (6), 1339-1339(1958).
    [16] K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, “Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts”, Journal of the American Chemical Society , 136, 6083−6091, (2014 )
    [17] X. Jia,J. Campos-Delgado, M. Terrones, V. Meuniere , M.S. Dresselhaus, “Graphene edges: a review of their fabrication and characterization”, nanoscale, 3, 86(2011)
    [18] Z. Sun1, Z. Yan1, J. Yao, E. Beitler1, Y. Zhu1 , J. M. Tour1, “Growth of graphene from solid carbon sources”, Nature 468 (7323), 549-552(2010).
    [19] C. Berger, Z. Song, X. Li, X. Wu,N. Brown, C. Naud, D. Mayou, T. Li,J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene” , Science ,312 (5777), 1191-1196 (2006)
    [20] W. Norimatsu, M. Kusunoki, Formation process of graphene on SiC (0001), "Low-dimensional Systems and Nanostructures", Physica E, 42 (4), 691–694 (2010).

    [21] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, “Graphene segregated on Ni surfaces and transferred to insulators”, Appl. Phys. Lett. 93, 113103 (2008)

    [22] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science 324 (5932), 1312-1314 (2009)
    [23] D. Geng, B. Wu1, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, Y. Liu, “Uniform hexagonal graphene flakes and films grown on liquid copper surface”, PNAS ,vol. 109 ,no. 21, 7992–7996 (2012).
    [24] http://www.isu.edu.tw/upload/81201/48/news/postfile_43775.pdf
    [25] https://en.wikipedia.org/wiki/Light-emitting_diode
    [26] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, J. M. Tsai, “400-nm InGaN–GaN and InGaN–AlGaN Multiquantum Well Light-Emitting Diodes”, IEEE Journal of Selected Topics in Quantum Electronics 8 (4), 1077-260X (2002)
    [27] http://www.golsen.jp/en/ultraviolet/kindofu.html
    [28] R. H. Horng, B. R. Wu, C. H. Tien, S. L. Ou, M. H. Yang, H. C. Kuo, and D. S. Wuu, “ Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrate”, Optic Express 22 (1), A179-A187 (2014)
    [29] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei1, “Graphene segregated on Ni surfaces and transferred to insulators” , APPLIED PHYSICS LETTERS ,93, 113103 (2008)
    [30] T. Kato, R. Hatakeyama, “Direct Growth of Doping-Density Controlled Hexagonal Graphene on SiO2 Substrate by Rapid-Heating Plasma CVD” , ACS Nano, 6 (10), pp 8508–8515(2012)
    [31] B. J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, Jr.2 , J. Kim1, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes”, Optics Express 18 (22), 23030-23034 (2010)

    [32] S. Chandramohan, J.H. Kang, B.D. Ryu, J.H. Yang, S. Kim, H. Kim, J.B. Park, T.Y. Kim, B.J. Cho, E.K. Suh, C.H. Hong, “Impact of Interlayer Processing Conditions on the Performance of GaN Light-Emitting Diode with Specific NiOx/Graphene Electrode”, Solid-State Electronics ,109 ,47–51 (2015)
    [33] http://www.dahyoung.com/thinktank_article.php?id=30
    [34] http://web.it.nctu.edu.tw/~FMPANLAB/ALD.htm
    [35] https://services.icmab.es/nanoquim/index.php?option=com_k2&view=item&id=14:atomic-layer-deposition-system-savannah-from-cambrige-nanotech&Itemid=9
    [36] 莫定山(2007), “Raman 光譜原理及應用” , available : http:// labguide.com.tw/user/w016267551/uploads/1246937317.pdf
    [37] http://bwtek.com/raman-theory-of-raman-scattering/
    [38] http://cnx.org/contents/8GImxcKk@2/Characterization-of-Graphene-b
    [39] http://eshare.stust.edu.tw/EshareFile/2016_12/2016_12_297db8f5.pdf
    [40] http://highscope.ch.ntu.edu.tw/wordpress/?p=1599

    無法下載圖示 本全文未授權公開
    QR CODE