簡易檢索 / 詳目顯示

研究生: 陳思璇
Chen, Si-Syuan
論文名稱: 以主題分析、隨機森林與多準則決策分析法探勘第六代行動通訊技術專利
Topic Modeling, Random Forest, and MCDM Methods Based Explorations of Patents for the Sixth Generation Wireless Communication Techniques
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 黃日鉦
Huang, Jih-Jeng
陳良駒
Chen, Liang-Chu
黃啟祐
Huang, Chi-Yo
口試日期: 2022/07/17
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 114
中文關鍵詞: 第六代行動通訊專利(6th Generation,6G)文本挖掘主題建模隨機森林決策試驗與評估實驗室法(Decision Making Trial and Evaluation Laboratory,DEMATEL)多準則決策分析 (multiple criteria decision making,MCDM)
英文關鍵詞: The Sixth Generation (6G) Communication, text mining, topic modeling, Random Forest, Decision Making Trial and Evaluation Laboratory (DEMATEL), multiple criteria decision making (MCDM)
研究方法: 主題分析隨機森林多準則決策分析法
DOI URL: http://doi.org/10.6345/NTNU202201579
論文種類: 學術論文
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第六代行動通訊(6th Generation,6G)為次世代無線通訊的基礎,目前,全球仍處於探索階段,主流技術尚不明確,因此,專利發展與布局之現況,極需探索,以作為未來學術、研究與廠商產品與規格訂定之依據。雖然6G專利探勘極為重要,相關研究甚少,故本研究提出整合文字探勘探勘技術與多準則決策分析方法之新型架構,探勘6G通訊專利。
    首先,本研究依據美國專利商標局(United States Patent and Trademark Office,USPTO)專利資料庫中探勘之6G通訊技術專利,透過隱含狄利克雷分佈(Latent Dirichlet Allocation,LDA)擷取主題,之後,針對每個主題,使用隨機森林迴歸(Random Forest Regression)演算法,得出每一專利主題以其他主題表示之特徵重要性後,將特徵重要矩陣轉化為決策實驗室分析法(Decision Making Trial and Evaluation Laboratory,DEMATEL)的初始影響矩陣。其次,透過基於決策實驗室之網路流程法(DEMATEL based Analytic Network Process,DANP)得出對應於每個主題的影響權重,權重最高之主題所對應之技術,為第六代行動通訊技術之驅動力量。
    依據實證研究之結果,得出全息無線電技術(Holographic radio technology)、同頻同時全雙工(Co-frequency co-time full-duplex)和智能與通訊融合(Wireless artificial intelligence fusion, Wireless AI fusion)這3個關鍵技術,對6G通訊未來的發展最為重要,而全息無線電技術(Holographic radio technology)是影響力最大的技術。研究結果不僅作為瞭解6G通訊技術發展脈絡之基礎之外,也可以提供未來6G通訊技術發展參考之依據。此外,所發展之技術分析框架,也可用於探索其他領域技術與專利之用。

    The sixth-generation (6G) wireless communication is the foundation of the next-generation wireless communication. At present, the world is still in the exploratory stage, and mainstream technology is not yet clear. Thus, the current situation of patent development and landscape needs to be mined, where the results can serve as the basis for future academic researches, as well as foundations for developments of specifications and products. Albeit the mining of 6G patents is very important, related research is very little. Therefore, this research proposes a novel analytic framework which integrates text mining techniques and hybrid multiple criteria decision making (MCDM) methods. The analytic framework is used in mining patents of 6G.
    Thus, the research first mined the patent database of the United States Patent and Trademark Office (USPTO). According to the 6G patents mined, topics were extracted by using the Latent Dirichlet Allocation (LDA). Then, for each topic, the Random Forest regression algorithm was introduced to obtain the feature importance of each topic of 6G technology. After that, the feature importance matrix was transferred into the initial impact matrix of Decision Making Trial and Evaluation Laboratory (DEMATEL). By adopting the DEMATEL based Analytic Network Process (DANP) method, the influence weight of each topic was obtained. In each topic, the technology with the highest weight is the driving force for future 6G wireless communication technology.
    According to the results from empirical research, three key technologies were obtained: holographic radio technology, co-frequency co-time full-duplex, and wireless AI fusion. These techniques are the most important ones for the development standards and protocols of future 6G communication technology. And holographic radio technology is the most influential technology. The research results not only can serve as the basis for understanding the development of 6G technology, but can also provide a reference for the future development of 6G communication technology. In addition, the developed technical analysis framework can also be used to explore technologies and patents in other fields.

    摘要 i Abstract iii Table of Contents v List of Table vii List of Figure viii List of Appendix ix Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivations 2 1.3 Research Purposes 3 1.4 Research Framework 4 1.5 Research Process 4 1.6 Research Limitations 6 1.7 Thesis Structure 6 Chapter 2 Literature Review 9 2.1 Patent Analysis 9 2.2 Topic Modeling 12 2.3 Using Topic Modeling Techniques as Technical Analysis 15 2.4 Applications of Topic Modeling in Patent Analysis 16 2.5 6G Communication 18 Chapter 3 Research Methods 45 3.1 Text Mining, Topic Modeling and LDA 45 3.2 The Random Forest Technique 48 3.3 DEMATEL 50 3.4 The DANP 52 Chapter 4 Empirical Study 55 4.1 Scraping and Pre-processing of 6G Patents 55 4.2 6G Patent Data 56 4.3 Extract Main Topics Using LDA Methods 61 4.4 6G Key Technology Grouping Results 64 4.5 Deriving Feature Importance Using Random Forest Algorithm 69 4.6 Export influence relations and influence weights using DEMATEL and DANP 72 4.7 Meaning of data results 78 4.8 Experts confirm the results 83 Chapter 5 Discussion 85 5.1 Theoretical Implications 85 5.2. Advances in Research Method 89 5.3 Limitations and future research possibilities 90 Chapter 6 Conclusion 93 References 95 Appendix 111

    Aazhang, B., Ahokangas, P., Alves, H., Alouini, M. S., Beek, J., Benn, H., ... & Chen, F. (2019). Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence (White Paper). Oulu, Finland: 6G Flagship, University of Oulu, 1.
    Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21(4), 245-252.
    Alcacer, J., & Gittelman, M. (2006). Patent citations as a measure of knowledge flows: The influence of examiner citations. The Review of Economics and Statistics, 88(4), 774-779.
    Al-Dulaimi, A., Wang, X., & Chih-Lin, I. (2018). 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management. Hoboken, NJ: Wiley.
    Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919.
    Alliance for Telecommunications Industry Solutions (2022, February). Next G Alliance Report: Roadmap to 6G. Retrieved from https://nextgalliance.org/wp-content/uploads/2022/02/NextGA-Roadmap.pdf
    Ambrosino, A., Cedrini, M., Davis, J. B., Fiori, S., Guerzoni, M., & Nuccio, M. (2018). What topic modeling could reveal about the evolution of economics. Journal of Economic Methodology, 25(4), 329-348.
    Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.
    Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022.
    Bonino, D., Ciaramella, A., & Corno, F. (2010). Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Information, 32(1), 30-38.
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
    Chaccour, C., Soorki, M. N., Saad, W., Bennis, M., Popovski, P., & Debbah, M. (2022). Seven defining features of terahertz (THz) wireless systems: A fellowship of communication and sensing. IEEE Communications Surveys & Tutorials, 24(2), 967-993.
    Chae, B. K., & Park, E. O. (2018). Corporate social responsibility (CSR): A survey of topics and trends using Twitter data and topic modeling. Sustainability, 10(7), 2231.
    Chang, H.-C. (2016). The synergy of scientometric analysis and knowledge mapping with topic models: modelling the development trajectories of information security and cyber-security research. Journal of Information & Knowledge Management, 15(04), 1650044.
    Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. Advances in Neural Information Processing Systems, 288-296.
    Chen, H., Zhang, G., Zhu, D., & Lu, J. (2017). Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014. Technological Forecasting and Social Change, 119, 39-52.
    Chen, H., Zhang, Y., Zhang, G., Zhu, D., & Lu, J. (2015). Modeling technological topic changes in patent claims. 2015 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2049-2059.
    Cho, T.-S., & Shih, H.-Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997-2008. Scientometrics, 89(3), 795-811.
    Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1, 957-975.
    De Battisti, F., Ferrara, A., & Salini, S. (2015). A decade of research in statistics: A topic model approach. Scientometrics, 103(2), 413-433.
    Demoulin, N. T., & Coussement, K. (2020). Acceptance of text-mining systems: The signaling role of information quality. Information & Management, 57(1), 103120.
    Ding, W., & Chen, C. (2014). Dynamic topic detection and tracking: A comparison of HDP, C‐word, and cocitation methods. Journal of the Association for Information Science and Technology, 65(10), 2084-2097.
    Dotsika, F., & Watkins, A. (2017). Identifying potentially disruptive trends by means of keyword network analysis. Technological Forecasting and Social Change, 119, 114-127.
    Ernst, H. (2003). Patent information for strategic technology management. World Patent Information, 25(3), 233-242.
    Evangelista, A., Ardito, L., Boccaccio, A., Fiorentino, M., Petruzzelli, A. M., & Uva, A. E. (2020). Unveiling the technological trends of augmented reality: A patent analysis. Computers in Industry, 118, 103221.
    Farrell, J. (2016). Corporate funding and ideological polarization about climate change. Proceedings of the National Academy of Sciences, 113(1), 92-97.
    Feldman, R., & Dagan, I. (1995). Knowledge Discovery in Textual Databases (KDT). Knowledge Discovery and Data Mining, 95, 112-117.
    Gabus, A., & Fontela, E. (1972). World Problems, An Invitation to Further Thought Within The Framework of DEMATEL. Battelle Geneva Research Center.
    Gao, H., Su, Y., Zhang, S., Hou, Y., & Jo, M. (2021). Joint antenna selection and power allocation for secure co-time co-frequency full-duplex massive MIMO systems. IEEE Transactions on Vehicular Technology, 70(1), 655-665.
    Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467-483.
    Hassan, B., Baig, S., & Asif, M. (2021). Key Technologies for Ultra-Reliable and Low-Latency Communication in 6G. IEEE Communications Standards Magazine, 5(2), 106-113.
    Han, C., Wu, Y., & Chen, Z. (2018). Network 2030 a blueprint of technology applications and market drivers towards the year 2030 and beyond. In: International Telecommunication Union, Geneva. Retrieved from https://www.itu.int/en/ITU-T/focusgroups/net2030/Pages/default.aspx
    He, H., Yu, X., Zhang, J., Song, S., & Letaief, K. B. (2021). Cell-Free Massive MIMO for 6G Wireless Communication Networks. Journal of Communications and Information Networks, 6(4), 321-335.
    Hexa-X (2021, February). 6G Vision, use cases and key societal values. Retrieved from https://hexa-x.eu/wp-content/uploads/2021/02/Hexa-X_D1.1.pdf
    Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition, 1, 278-282.
    Huang, A. H., Lehavy, R., Zang, A. Y., & Zheng, R. (2018). Analyst information discovery and interpretation roles: A topic modeling approach. Management Science, 64(6), 2833-2855.
    Huang, C., Hu, S., Alexandropoulos, G. C., Zappone, A., Yuen, C., Zhang, R., ... & Debbah, M. (2020). Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wireless Communications, 27(5), 118-125.
    Huang, C.-Y., Chung, P.-H., Shyu, J. Z., Ho, Y.-H., Wu, C.-H., Lee, M.-C., & Wu, M.-J. (2018). Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods. Sustainability, 10(10), 3451.
    Huang, C.-Y., Hsieh, H.-L., & Chen, H. (2020). Evaluating the investment projects of spinal medical device firms using the real option and DANP-mV based MCDM methods. International Journal of Environmental Research and Public Health, 17(9), 3335.
    Huang, C.-Y., Wang, H.-Y., Yang, C.-L., & Shiau, S. J. (2020). A derivation of factors influencing the diffusion and adoption of an open source learning platform. Sustainability, 12(18), 7532.
    Huang, C. Y., Yang, C. L., & Hsiao, Y. H. (2021). A novel framework for mining social media data based on text mining, topic modeling, random forest, and DANP methods. Mathematics, 9(17), 2041.
    IMT-2030(6G) Promotion group (2022, July). 6G Typical Scenarios and Key Capabilities white paper. Retrieved from http://www.caict.ac.cn/kxyj/qwfb/ztbg/202207/74081658646766480.pdf
    ITUR WP5D (2022, June). IMT Future Technology Trends of Terrestrial IMT Systems Towards 2030 and Beyond. Retrieved from https://www.itu.int/md/R19-WP5D-C-1353
    Jadidi, M. M., Sushkov, A. B., Myers-Ward, R. L., Boyd, A. K., Daniels, K. M., Gaskill, D. K., ... & Murphy, T. E. (2015). Tunable terahertz hybrid metal–graphene plasmons. Nano Letters, 15(10), 7099-7104.
    Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211.
    Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., ... & Wang, F. (2011). Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6(10), 630-634.
    Kao, Y.-S., Nawata, K., & Huang, C.-Y. (2019). Systemic functions evaluation based technological innovation system for the sustainability of IoT in the manufacturing industry. Sustainability, 11(8), 2342.
    Kaplan, S., & Vakili, K. (2015). The double‐edged sword of recombination in breakthrough innovation. Strategic Management Journal, 36(10), 1435-1457.
    Karami, A., Lundy, M., Webb, F., & Dwivedi, Y. K. (2020). Twitter and research: A systematic literature review through text mining. IEEE Access, 8, 67698-67717.
    Khodaei, A., & Deogun, J. (2021). Optical MIMO Communication Using Holographic Spectral Multiplexing of Pulsed Ultrashort Laser. arXiv preprint arXiv:2106.13896.
    Kim, G., Lee, J., Jang, D., & Park, S. (2016). Technology clusters exploration for patent portfolio through patent abstract analysis. Sustainability, 8(12), 1252.
    Kim, M., Park, Y., & Yoon, J. (2016). Generating patent development maps for technology monitoring using semantic patent-topic analysis. Computers & Industrial Engineering, 98, 289-299.
    Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihók, G., & Den Hartog, D. N. (2018). Text mining in organizational research. Organizational Research Methods, 21(3), 733-765.
    Kolodziej, K. E., Perry, B. T., & Herd, J. S. (2019). In-band full-duplex technology: Techniques and systems survey. IEEE Transactions on Microwave Theory and Techniques, 67(7), 3025-3041.
    Lafond, F., & Kim, D. (2019). Long-run dynamics of the US patent classification system. Journal of Evolutionary Economics, 29(2), 631-664.
    Larsen, V., & Thorsrud, L. A. (2019). Business cycle narratives. CESifo Working Paper Series, 7468.
    Latva-aho, M., Leppänen, K., Clazzer, F., & Munari, A. (2020). Key drivers and research challenges for 6G ubiquitous wireless intelligence. Retrieved from https://elib.dlr.de/133477/
    Lee, C., Song, B., & Park, Y. (2013). How to assess patent infringement risks: A semantic patent claim analysis using dependency relationships. Technology Analysis & Strategic Management, 25(1), 23-38.
    Lee, W. S., Han, E. J., & Sohn, S. Y. (2015). Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents. Technological Forecasting and Social Change, 100, 317-329.
    Lei, X.-P., Zhao, Z.-Y., Zhang, X., Chen, D.-Z., Huang, M.-H., Zheng, J., Liu, R.-S., Zhang, J., & Zhao, Y.-H. (2013). Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis. Scientometrics, 96(2), 427-441.
    Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y. J. A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Communications Magazine, 57(8), 84-90.
    Letaief, K. B., Shi, Y., Lu, J., & Lu, J. (2021). Edge artificial intelligence for 6G: Vision, enabling technologies, and applications. IEEE Journal on Selected Areas in Communications, 40(1), 5-36.
    Li, J., Zhang, H., & Fan, M. (2017). Digital self-interference cancellation based on independent component analysis for co-time co-frequency full-duplex communication systems. IEEE Access, 5, 10222-10231.
    Li, X., Xie, Q., Daim, T., & Huang, L. (2019). Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology. Technological Forecasting and Social Change, 146, 432-449.
    Liu, C.-H., Tzeng, G.-H., & Lee, M.-H. (2012). Improving tourism policy implementation–The use of hybrid MCDM models. Tourism Management, 33(2), 413-426.
    Liu, F., Cui, Y., Masouros, C., Xu, J., Han, T. X., Eldar, Y. C., & Buzzi, S. (2022). Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond. IEEE Journal on Selected Areas in Communications,40(6), 1728 – 1767.
    Liu, G., Huang, Y., Li, N., Dong, J., Jin, J., Wang, Q., & Li, N. (2020). Vision, requirements and network architecture of 6G mobile network beyond 2030. China Communications, 17(9), 92-104.
    Liu, L., Tang, L., Dong, W., Yao, S., & Zhou, W. (2016). An overview of topic modeling and its current applications in bioinformatics. SpringerPlus, 5(1), 1-22.
    Long, W., Chen, R., Moretti, M., Zhang, W., & Li, J. (2021). A promising technology for 6G wireless networks: Intelligent reflecting surface. Journal of Communications and Information Networks, 6(1), 1-16.
    Ma, D., Yu, Q., Li, J., & Ge, M. (2021). Innovation diffusion enabler or barrier: An investigation of international patenting based on temporal exponential random graph models. Technology in Society, 64, 101456.
    Masiakowski, P., & Wang, S. (2013). Integration of software tools in patent analysis. World Patent Information, 35(2), 97-104.
    MediaTek Inc. (2022,January). 6G vision white paper. Retrieved from https://www.mediatek.com/blog/6g-whitepaper
    Ministry of Internal Affairs and Communications (2020). Beyond 5G promotion strategy. Retrieved from https://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/pressrelease/2020/6/30_7.html
    Ministry of Science and ICT (2020, August). Leading the 6G Era Future Mobile Communication R&D Promotion Strategy. Retrieved from https://doc.msit.go.kr/SynapDocViewServer/viewer/doc.html?key=8546de5ae9f240ef821ed8b0edb0765a&convType=img&convLocale=ko_KR&contextPath=/SynapDocViewServer
    Ministry of Science and ICT (2021, June). 6G R&D implementation plan. Retrieved from https://doc.msit.go.kr/SynapDocViewServer/viewer/doc.html?key=18b3e718d50a4b029fdf575edcb30e74&convType=html&convLocale=ko_KR&contextPath=/SynapDocViewServer
    Moro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Systems with Applications, 42(3), 1314-1324.
    Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147-155.
    National Institute of Information and Communications Technology (2022, June). Beyond 5G/6G White Paper. Retrieved from https://beyond5g.nict.go.jp/en/download/index.html
    NGMN Alliance (2021,April). 6G drivers and vision. Retrieved from https://www.ngmn.org/wp-content/uploads/NGMN-6G-Drivers-and-Vision-V1.0_final.pdf.
    Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., Niyato, D., ... & Poor, H. V. (2021). 6G Internet of Things: A comprehensive survey. IEEE Internet of Things Journal, 9(1), 359-383.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.
    Phillips-Wren, G., Jain, L.C., Nakamatsu, K. & Howlett, R.J. (2010). Advances in Intelligent Decision Technologies: Proceedings of The Second Kes International Symposium Idt 2010. Salmon Tower Building, NY: Springer-Verlag.
    Pizzo, A., Marzetta, T. L., & Sanguinetti, L. (2019). Spatial characterization of holographic MIMO channels. arXiv preprint arXiv:1911.04853.
    Prather, D. W. (2016). 5G Moves into the light: Holographic massive MIMO. IEEE ComSoc Technol. News. Retrieved from https://www.comsoc.org/publications/ctn
    Ramage, D., Rosen, E., Chuang, J., Manning, C. D., & McFarland, D. A. (2009). Topic modeling for the social sciences. NIPS 2009 Workshop on Applications for Topic Models: Text and Beyond, 5, 1-4.
    Ranaei, S., & Suominen, A. (2017). Using machine learning approaches to identify emergence: Case of vehicle related patent data. 2017 Portland International Conference on Management of Engineering and Technology (PICMET), 1-8.
    Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder‐Luis, J., Gadarian, S. K., Albertson, B., & Rand, D. G. (2014). Structural topic models for open‐ended survey responses. American Journal of Political Science, 58(4), 1064-1082.
    Sanguinetti, L., D'Amico, A. A., & Debbah, M. (2021). Wavenumber-division multiplexing in line-of-sight holographic MIMO communications. arXiv preprint arXiv:2106.12531.
    Savin, I., Drews, S., & van den Bergh, J. (2021). Free associations of citizens and scientists with economic and green growth: A computational-linguistics analysis. Ecological Economics, 180, 106878.
    Savin, I., Drews, S., Maestre-Andrés, S., & van den Bergh, J. (2020). Public views on carbon taxation and its fairness: a computational-linguistics analysis. Climatic Change, 162(4), 2107-2138.
    Shadrivov, I. V., & Neshev, D. N. (2017). Tunable metamaterials. Singapore: World Scientific, 9, 387-418.
    Shiau, S. J., Huang, C.-Y., Yang, C.-L., & Juang, J.-N. (2018). A derivation of factors influencing the innovation diffusion of the OpenStreetMap in STEM education. Sustainability, 10(10), 3447.
    Shih, K. H., Tsai, C. M., & Wang, Y. H. (2020). The Association between Corporate Patent and Corporate Value. Journal of Accounting, Finance & Management Strategy, 15(1), 53-73.
    Singh, A. P., Nigam, S., & Gupta, N. K. (2007). A study of next generation wireless network 6G. Int. J. of Innovative Research in Computer and Communication Engineering, 4(1), 871-874.
    Song, H. J., & Lee, N. (2021). Terahertz communications: Challenges in the next decade. IEEE Transactions on Terahertz Science and Technology, 12(2), 105-117.
    Strinati, E. C., Barbarossa, S., Gonzalez-Jimenez, J. L., Ktenas, D., Cassiau, N., Maret, L., & Dehos, C. (2019). 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Vehicular Technology Magazine, 14(3), 42-50.
    Suominen, A., Toivanen, H., & Seppänen, M. (2017). Firms' knowledge profiles: Mapping patent data with unsupervised learning. Technological Forecasting and Social Change, 115, 131-142.
    Tan, D. K. P., He, J., Li, Y., Bayesteh, A., Chen, Y., Zhu, P., & Tong, W. (2021, February). Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions. 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), 1-6.
    Tang, J., Jin, R., & Zhang, J. (2008). A topic modeling approach and its integration into the random walk framework for academic search. 2008 Eighth IEEE International Conference on Data Mining, 1055–1060.
    Tataria, H., Shafi, M., Molisch, A. F., Dohler, M., Sjöland, H., & Tufvesson, F. (2021). 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE, 109(7), 1166-1199.
    Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of Marketing Research, 51(4), 463-479.
    Trumbach, C. C., Payne, D., & Kongthon, A. (2006). Technology mining for small firms: Knowledge prospecting for competitive advantage. Technological Forecasting and Social Change, 73(8), 937-949.
    Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
    Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159-190.
    Tzeng, G.-H., & Huang, J.-J. (2011). Multiple Attribute Decision Making: Methods And Applications. Boca Raton, FL: CRC press.
    Venugopalan, S., & Rai, V. (2015). Topic based classification and pattern identification in patents. Technological Forecasting and Social Change, 94, 236-250.
    Wang, B., Liu, S., Ding, K., Liu, Z., & Xu, J. (2014). Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology. Scientometrics, 101(1), 685-704.
    Yang, C.-L., Huang, C.-Y., Kao, Y.-S., & Tasi, Y.-L. (2017). Disaster recovery site evaluations and selections for information systems of academic Big Data. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 4553-4589.
    Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70-75.
    Yim, O., & Ramdeen, K. T. (2015). Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. The Quantitative Methods for Psychology, 11(1), 8-21.
    Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37-50.
    You, X., Wang, C. X., Huang, J., Gao, X., Zhang, Z., Wang, M., ... & Liang, Y. C. (2021). Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 64(1), 1-74.
    Yu, X., & Zhang, B. (2019). Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning. Technological Forecasting and Social Change, 145, 273-283.
    Yun, J. J., Jeong, E., & Park, J. (2016). Network analysis of open innovation. Sustainability, 8(8), 729.
    Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 128-137.
    Zhao, Y., Zhao, J., Zhai, W., Sun, S., Niyato, D., & Lam, K. Y. (2021). A survey of 6G wireless communications: Emerging technologies. Future of Information and Communication Conference, 150-170.
    Zhu, Y., Li, J., Zhu, P., Wu, H., Wang, D., & You, X. (2021). Optimization of duplex mode selection for network-assisted full-duplex cell-free massive MIMO systems. IEEE Communications Letters, 25(11), 3649-3653.
    Zong, B., Fan, C., Wang, X., Duan, X., Wang, B., & Wang, J. (2019). 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies. IEEE Vehicular Technology Magazine, 14(3), 18-27.

    無法下載圖示 本全文未授權公開
    QR CODE