研究生: |
蔡宏桂 Hung-Kuei Tsai |
---|---|
論文名稱: |
雷射質量轉印技術製作非正定超穎材料之感測應用 Indefinite metamaterial fabricated by laser induced forward transfer for sensing application |
指導教授: | 吳謙讓 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 雷射質量轉印技術 、非正定超穎材料 、雷射直寫式微影技術 、飛秒雷射系統 、原子力顯微鏡 、表面增強拉曼光譜 |
英文關鍵詞: | Laser induced forward transfer, Indefinite metamaterial, Laser direct-writing technology, Femtosecond laser system, Atomic force microscope, Surface enhanced Raman spectroscopy |
論文種類: | 學術論文 |
相關次數: | 點閱:326 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文有五個章節。第一個章節是介紹非正定超穎材料之特性及其應用,以及介紹雷射質量轉印技術LIFT(Laser induced forward transfer),第二章節是敘述非正定超穎材料之設計與模擬。第三章節主要詳細介紹實驗中所使用到的儀器,從使用濺鍍機之樣品製作、飛秒雷射之架構與原理、原子力顯微鏡之運作原理及工作模式,第四章為實驗結果,敘述嘗試幾個實驗參數下之原子力顯微鏡影像結果,及量測穿透光譜之光譜結果。最後把製作好的樣品拿去作感測分析,利用拉曼光譜量測表面增強拉曼光譜。
The thesis consists of five chapters. In chapter 1, We will give a brief review of basic properties of the indefinite metamaterial and the application of the indefinite metamaterial. And introduce the LIFT (Laser induced forward transfer) technique In chapter 2, We will introduce the design and simulation of the indefinite metamaterial. In chapter 3, I will show the experimental process, and the principle of the instrument. From sputtering machine production, the structure and principles of the femto-second laser and atomic force microscopy (AFM) principle and mode of operation. In chapter 4, this chapter is the experimental result. We try some experimental data to fabricate the indefinite metamaterial. And we measure the sample’s transmission spectrum. Finally, we will use the Raman spectrum to measure the sample’s SERS(Surface-enhanced Raman spectroscopy) .
[1] Walser R M, "Metamaterials: What are they? What are they good for? ", Bulletin of the American Physical Society, 882 (2000)
[2] Walser R M, "Electromagnetic metamaterials", Proc. SPIE 4467, Complex Mediums II: Beyond Linear Isotropic Dielectrics, 1 (July 9, 2001); doi:10.1117/12.432921
[3] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[4] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[5] Lindell I V, Tretyakov S A, Nikosklnen K I, et al. BW media-media with negative parameters, capable of supporting backward waves. Microw Opt Technol Lett, 2001, 31: 129–133
[6] Smith D R, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett, 2003, 90: 077405–077409
[7] Smith D R, Kolinko P, Schurig D. Negative refraction in indefinite media. J Opt Soc Am B, 2004, 21: 1032–1043
[8] Yao J, Liu Z W, Liu Y M, et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 2008, 321: 930
[9] X. D. Yang, J. Yao, J. Rho, X. B. Yin, and X. Zhang, "Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws," Nat. Photonics 6, 450-454 (2012).
[10] C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, "Quantum nanophotonics using hyperbolic metamaterials," J. Opt. 14 (2012).
[11] Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006).
[12] Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).
[13] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nat. Mater. 8, 867-871 (2009).
[14] W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. L. Sun, Y. W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D. W. Huang, A. Q. Liu, and D. P. Tsai, "Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer," Opt. Express 21, 618-625 (2013).
[15] J. Bohandy, B. F. Kim, and F. J. Adrian, "METAL-DEPOSITION FROM A SUPPORTED METAL-FILM USING AN EXCIMER LASER," J. Appl. Phys. 60, 1538-1539 (1986).
[16] C. B. Arnold, P. Serra, and A. Pique, "Laser direct-write techniques for printing of complex materials," MRS Bull. 32, 23-31 (2007)..
[17] A. Pique, D. B. Chrisey, R. C. Y. Auyeung, J. Fitz-Gerald, H. D. Wu, R. A. McGill, S. Lakeou, P. K. Wu, V. Nguyen, and M. Duignan, "A novel laser transfer process for direct writing of electronic and sensor materials," Applied Physics a-Materials Science & Processing 69, S279-S284 (1999).
[18] D. A. Willis, and V. Grosu, "Microdroplet deposition by laser-induced forward transfer," Appl. Phys. Lett. 86 (2005).
[19] Multi-layer pattern manufactured by femto-second laser-induced transfer technique, 國立台灣大學理學院應用物理研究所碩士論文,呂中豪.
[20] G. Binnig, C. F. Quate, and C. Gerber, "ATOMIC FORCE MICROSCOPE," Phys. Rev. Lett. 56, 930-933 (1986).
[21] J. L. Hutter, and J. Bechhoefer, "CALIBRATION OF ATOMIC-FORCE MICROSCOPE TIPS," Rev. Sci. Instrum. 64, 1868-1873 (1993).
[22] E. L. Florin, V. T. Moy, and H. E. Gaub, "ADHESION FORCES BETWEEN INDIVIDUAL LIGAND-RECEPTOR PAIRS," Science 264, 415-417 (1994).
[23] H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, "Nanotubes as nanoprobes in scanning probe microscopy," Nature 384, 147-150 (1996).
[24] M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, "Reversible unfolding of individual titin immunoglobulin domains by AFM," Science 276, 1109-1112 (1997).