簡易檢索 / 詳目顯示

研究生: 易心宇
Yih, Hsin-Yu
論文名稱: 擴增實境結合體驗式學習循環模式應用於等高線地形圖概念學習
The Effect of Integrating Experiential Learning Cycle with Augmented Reality in Learning Topographic Maps
指導教授: 張國恩
Chang, Kuo-En
口試委員: 宋曜廷
Sung, Yao-Ting
黃國禎
Hwang, Gwo-Jen
張國恩
Chang, Kuo-En
口試日期: 2023/01/18
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 擴增實境等高線體驗式學習
英文關鍵詞: Augmented Reality, Contour Line, Experiential Learning
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300450
論文種類: 學術論文
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討整合擴增實境與體驗式學習循環,對於國中學習者在學習等高線地形圖概念的影響。研究設計一套擴增實境系統用於輔助學習者將二維等高線圖轉化成三維立體地形,並透過體驗式學習循環的四個步驟,使學習者將學習經驗透過引導、歸納轉化形成知識。
    本研究採用準實驗之不等組前後測設計,受試者為台北市某完全中學八年級學生共81位。實驗結果以 ANOVA、ANCOVA、U檢定來檢視兩組學生在學習成效、學習保留與神馳經驗上的差異,並以訪談及回饋表單了解學習者的學習體驗感受及未來使用意願。
    研究結果顯示:(一)使用擴增實境體驗式學習循環模式的學習者,其學習成效顯著高於接受傳統講述式教學的學習者;(二)使用擴增實境體驗式學習循環模式的學習者,其學習保留顯著高於接受傳統講述式教學的學習者;(三)使用擴增實境體驗式學習循環模式的學習者,其神馳經驗與接受傳統講述式教學的學習者並無顯著的差異。

    The study aims to investigate the impact of integrating augmented reality with experiential learning cycle in learning topographic maps by junior high school students. The researcher designs an augmented reality system to assist learners in transforming two-dimensional contour line into three-dimensional terrain. Also, the four steps of the experiential learning cycle help to guide learners in transforming their learning experiences into knowledge through the steps of reflection and conceptualization.
    The study used quasi-experimental design, and invited 81 eighth grade students from a junior high school in Taipei city to participate the learning activity. The results of the study were analyzed by ANOVA, ANCOVA, and U-tests to examine the differences in learning outcomes, learning retention, and flow experience between two groups, also researcher interviewed participants and used feedback form to understand learning experiences and usage intention.
    The result showed that: (a) the learning outcomes of the experiment group was significantly higher than the control group. (b) the learning retention of experiment group was significantly higher than the control group. (c) there was no significant difference in flow experience between two groups.

    第一章 緒論 1 第一節 研究背景 1 第二節 研究目的 4 第三節 研究假設 4 第四節 名詞釋義 5 第二章 文獻探討 7 第一節 等高線概念學習 7 第二節 擴增實境 10 第三節 體驗式學習 13 第三章 系統工具 17 第一節 系統設計 17 第二節 系統內容 19 第四章 研究方法 26 第一節 研究對象 26 第二節 研究設計 27 第三節 研究工具 28 第四節 教學模式 31 第五節 研究流程 32 第六節 資料處理與分析 34 第五章 研究結果 36 第一節 學習成效 36 第二節 記憶保留 38 第三節 神馳經驗 39 第四節 系統滿意度 42 第五節 訪談 44 第六章 討論與結論 48 第一節 討論 48 第二節 結論 51 第三節 研究限制與建議 52 第四節 未來研究方向54 參考文獻 55 附錄 61

    汪文嵩(2007)。地理資訊輔助等高線教學之設計研究。國立台灣大學,臺北市。
    李盈潔(2022)。不同模擬系統對學習程式基本結構的影響(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    宋建霆(2021)。運用擴增實境輔助建構概念圖之成效分析(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    邱美虹、唐尉天(2014)。行動科技,擴增實境與 3D 實驗影片教學:行動科技與擴增實境在科學教育上的應用。
    陶淑瑗、莊宗嚴(2014)。數位科技應用於小學低年級學童數學學習之反思。數位學習科技期刊, 7(2), 53-71.
    張珍悅(2018)。科技融入教學:iPad 融入地理課與Quizlet的課堂應用。取自 https://j108in.knsh.com.tw/article01.asp?ID=34
    張訓譯(2018)。虛擬實境運用於教育場域可能面臨的問題. 臺灣教育評論月刊, 7(11), 120-125.
    劉昊龍(2020)。適性化之擴增實境教材呈現對不同學習風格學習者之影響分析(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    鄭竹君(2018)。應用擴增實境於學童教材之學習動機與學習成效研究-以十以內數字加減法為例。國立臺北教育大學,臺北市。
    Adeniji, S. M., Ameen, S. K., Dambatta, B. U., & Orilonise, R. (2018). Effect of Mastery Learning Approach on Senior School Students' Academic Performance and Retention in Circle Geometry. International Journal of Instruction, 11(4), 951-962.
    Atit, K., Weisberg, S. M., Newcombe, N. S., & Shipley, T. F. (2016). Learning to interpret topographic maps: Understanding layered spatial information. Cognitive Research: Principles and Implications, 1(1), 1-18.
    Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 66-80.
    Birt, J., Stromberga, Z., Cowling, M., & Moro, C. (2018). Mobile mixed reality for experiential learning and simulation in medical and health sciences education. Information, 9(2), 31.
    Bishop, A. J. (1980). Spatial abilities and mathematics education—A review. Educational studies in mathematics, 11(3), 257-269.
    Bloom, B. S. (1968). Learning for Mastery. Instruction and Curriculum. Regional Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints, Number 1. Evaluation Comment, 1(2), n2.
    Bosch, R. (2021). Development and implementation of virtual field teaching resources: two karst geomorphology modules and three virtual capstone pathways. Geoscience Communication, 4(2), 329-349.
    Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270.
    Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17(4), 352-365.
    Chickering, A. W. (1977). Experience and Learning. An Introduction to Experiential Learning.
    Contero, M., Gomis, J. M., Naya, F., Albert, F., & Martin-Gutierrez, J. (2012, October). Development of an augmented reality based remedial course to improve the spatial ability of engineering students. In 2012 Frontiers in Education Conference Proceedings (pp. 1-5). IEEE.
    Csikszentmihalyi, M., & Csikzentmihaly, M. (1990). Flow: The psychology of optimal experience (Vol. 1990). New York: Harper & Row.
    Falloon, G. (2019). Using simulations to teach young students science concepts: An Experiential Learning theoretical analysis. Computers & Education, 135, 138-159.
    Feldman, A., Cooke, M. L., & Ellsworth, M. S. (2010). The classroom sandbox. The Science Teacher, 77(9), 58
    Fier, S. R. (2007). The effect of mastery learning on student learning of chemical stoichiometry (Doctoral dissertation, Walden University).
    Flynn, K. C. (2018). Improving spatial thinking through experiential-based learning across international higher education settings. International Journal of Geospatial and Environmental Research, 5(3), 4.
    Friederichs, H., Marschall, B., & Weissenstein, A. (2019). Simulation-based mastery learning in medical students: Skill retention at 1-year follow up. Medical Teacher, 41(5), 539-546.
    Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23(4), 447-459.
    Hsu, H. P., Tsai, B. W., & Chen, C. M. (2018). Teaching topographic map skills and geomorphology concepts with Google Earth in a one-computer classroom.Journal of Geography, 117(1), 29-39.
    Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
    Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
    Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123.
    Ishikawa, T., & Kastens, K. A. (2005). Why some students have trouble with maps and other spatial representations. Journal of Geoscience Education, 53(2), 184-197.
    Jantjies, M., Moodley, T., & Maart, R. (2018, December). Experiential learning through virtual and augmented reality in higher education. In Proceedings of the 2018 international conference on education technology management (pp. 42-45).
    Johnson, E. T., & McNeal, K. S. (2022). Student perspectives of the spatial thinking components embedded in a topographic map activity using an augmented-reality sandbox. Journal of Geoscience education, 70(1), 13-24.
    Kee, T., & Zhang, H. (2022). Digital Experiential Learning for Sustainable Horticulture and Landscape Management Education. Sustainability, 14(15), 9116.
    Lin, W., Lo, W. T., & Yueh, H. P. (2019, March). How the multimodal media in augmented reality affects museum learning Experience. In 2019 12th Asia Pacific Workshop on Mixed and Augmented Reality (APMAR) (pp. 1-4). IEEE.
    Liu, Q., Yu, S., Chen, W., Wang, Q., & Xu, S. (2021). The effects of an augmented reality based magnetic experimental tool on students' knowledge improvement and cognitive load. Journal of Computer Assisted Learning, 37(3), 645-656.
    Lu, S. J., & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children’s learning in marine education. Environmental Education Research, 21(4), 525-541.
    Macariu, C., Iftene, A., & Gîfu, D. (2020). Learn chemistry with augmented reality. Procedia Computer Science, 176, 2133-2142.
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Moorhouse, N., tom Dieck, M. C., & Jung, T. (2019). An experiential view to children learning in museums with augmented reality. Museum Management and Curatorship, 34(4), 402-418.
    Muehlberger, W. R., & Boyer, R. E. (1961). Space relations test as a measure of visualization ability. Journal of Geological Education, 9(2), 62-69.
    Poh, L. C. (1969). The teaching of contours. Journal of Geography, 68(8), 484-490.
    Pokrajac, N., Schertzer, K., Poffenberger, C. M., Marin-Nevarez, P., Winstead-Derlega, C., & Gisondi, M. A. (2020). Mastery learning ensures correct personal protective equipment use in simulated clinical encounters of COVID-19. Western Journal of Emergency Medicine, 21(5), 1089.
    Piburn, M. D., Reynolds, S. J., Leedy, D. E., McAuliffe, C. M., Birk, J. P., & Johnson, J. K. (2002). The hidden earth: Visualization of geologic features and their subsurface geometry. In annual meeting of the National Association for Research in Science Teaching, New Orleans, LA (pp. 1-4).
    Presmeg, N. C. (1986). Visualisation in high school mathematics. For the learning of mathematics, 6(3), 42-46.
    Rapp, D. N., Culpepper, S. A., Kirkby, K., & Morin, P. (2007). Fostering students' comprehension of topographic maps. Journal of Geoscience Education, 55(1), 5-16.
    Shokoohi, H., Boniface, K., Kaviany, P., Armstrong, P., Calabrese, K., & Pourmand, A. (2016). An experiential learning model facilitates learning of bedside ultrasound by preclinical medical students. Journal of Surgical Education, 73(2), 208-214.
    Vaughan, K. L., Vaughan, R. E., & Seeley, J. M. (2017). Experiential learning in soil science: Use of an augmented reality sandbox. Natural Sciences Education, 46(1), 1-5.
    Woods, T. L., Reed, S., Hsi, S., Woods, J. A., & Woods, M. R. (2016). Pilot study using the augmented reality sandbox to teach topographic maps and surficial processes in introductory geology labs. Journal of Geoscience Education, 64(3), 199-214.
    Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41-49.
    Wu, W. H., Yan, W. C., Kao, H. Y., Wang, W. Y., & Wu, Y. C. J. (2016). Integration of RPG use and ELC foundation to examine students’ learning for practice. Computers in Human Behavior, 55, 1179-1184.
    Zhang, J., Sung Y. T., Hou, H. T. , & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computer & Education, 73, 178-188
    Zhang, J., Yen, S. H., Liu, T. C., Sung, Y. T., & Chang, K. E. (2020). Studies on learning effects of AR-Assisted and PPT-based lectures. The Asia-Pacific Education Researcher, 1-10.

    無法下載圖示 電子全文延後公開
    2028/06/01
    QR CODE