研究生: |
柳如宗 Ju-Tsung Liu |
---|---|
論文名稱: |
β-硝基苯乙烯系列物與有機硼或格里納試劑反應之探討及安非他命系列物之氣相層析質譜分析 Ⅰ.Reactions of β-Nitrostyrenes with Organoboranes or Grignard Reagents Ⅱ.Amphetamines Analysis by GC-MS |
指導教授: |
姚清發
Yao, Ching-Fa |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 316 |
中文關鍵詞: | β-硝基苯乙烯 、有機硼試劑 、格里納試劑 、自由基 、安非他命 、氣相層析質譜 |
英文關鍵詞: | β-Nitrostyrenes, Organoboranes Reagents, Grignard Reagents, Free radical, Amphetamines, Gas Chromatography/ Mass Spectrometry |
論文種類: | 學術論文 |
相關次數: | 點閱:266 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
β-硝基苯乙烯系列物在氮氣下可與三烷基硼反應生成高產率之烯類化合物, 其反應機構係經由烷基自由基加成後脫去NO2自由基取代反應。此反應可在含有微量氧氣的氮氣系統中或過氧化物如tert-butyl peroxide 的存在下或在照光的條件下均可發生;而反應中加入自由基抑制劑galvinoxyl時, 則明顯抑制烯類產物的生成。
β-硝基苯乙烯系列物在空氣中與三乙基硼或三環己基硼於THF下反應, 可生成高產率之反式烯類化合物。由二級烷基碘如異丙基碘(isopropyl iodide) 與環己基碘 (cyclohexyl iodide)或三級烷基碘如第三丁基碘 (t-butyl iodide)、金剛烷基碘(adamantyl iodide)與5-碘-2-金鋼酮 (5-iodo-2-adamantanone) 在三乙基硼及空氣存在下為自由基誘發劑所產生之自由基, 與β-硝基苯乙烯系列物反應可生成中等至高產率之 (E)-烯類化合物。生成 (E)-烯類化合物之反應機構可能是經由產生苄基自由基中間物。當 (E)- 及 (Z)-α-烷基-β-硝基苯乙烯系列物在相似條件下與金剛烷自由基則生成 (E)- 及 (Z)-烯類化合物; 然而 (E)-及 (Z)-α-正丁基-β-硝基苯乙烯與金剛烷自由基反應則僅生成 (Z)-烯類化合物。
4-pentene-1-magnesium bromide 或 3-butene-1-magnesium
bromide 與β-硝基苯乙烯系列物進行 Michael-addition 反應生成nitronate中間產物。在室溫下將氯甲酸乙酯及4-dimethylamino-pyridine (催化量) 加入nitronate中間產物溶液中(one-pot)即可得到中等至高產率的isoxazolines衍生物, 反式-[4.3.0]:順式-[4.3.0]的比例從1:3.00到1:4.06, 而反式-[3.3.0]:順式-[3.3.0]的比例大於99:1。
在[4.3.0] isoxazolines產物之純化的過程中也同時分離到被氯甲酸乙酯捕捉住氧化氰 (nitrile oxide) 而生成的化合物, 所以[4.3.0] isoxazolines化合物可推論是經由INOC(intramolecular nitrile oxide- olefin cycloaddition)反應機構而產生。[4.3.0] isoxazolines產物的生成的機構則是推論經由IAOC(intramolecular alkoxycarbonyl nitronate- olefin cycloaddition)形成中間體N-(ethoxycarbonyl)isoxazolidines, 然後脫去EtOH和CO2(或 EtOCO2H)而得到最終產物。
最後就我國所列管之安非他命類濫用藥物進行氣相層析質譜之分析探討。當芳基乙胺濫用藥物的苯環或烷基側鏈有其他取代基存在時, 則有位向異構物 (regioisomer) 之存在, 此類位向異構物在GC-MS分析時, 顯示具有相似的分析性質。因而在刑事藥物檢體分析時, 必須排除位向異構物所可能產生之干擾。
對於未衍生之芳香族乙胺類位向異構物, 在GC-MS分析時, 顯示具有相似的層析性質且其質譜圖均非常相似, 因而難以區分其側鏈或苯環上取代基之位向異構物。然而在安非他命、甲氧基安非他命及3,4-亞甲雙氧安非他命等濫用藥物, 製備為全氟醯胺衍生物時, 於GC-MS分析能有良好的層析效果及具有特異性的質譜圖, 可用以區分苯環上連接之甲氧基及側鏈烷基之碳數。
Reaction of β-nitrostyrenes with trialkylboranes under nitrogen to generate alkenes in high yields. The mechanism is proposed to be a free-radical reaction via NO2/ alkyl substitution since the reaction is stimulated by the presence of a trace of oxygen in the nitrogen or tert-butyl peroxide or by photolysis and is retarded or inhibited by the addition of galvinoxyl.
Reactions of β-nitrostyrenes and triethylborane or tricyclohexylborane in THF solution at room temperature in the air produce trans-alkenes in high yields. Fair good yields of various (E)-alkenes can also be prepared by treatment of β-nitrostyrenes with radicals, prepared from secondary and tertiary alkyl iodides, in the presence of triethyl- borane and air as radical initiator. The generation of the only product (E)-alkenes can be explained by the formation of the benzylic radical as the intermediate. Both (E)- and (Z)- alkenes are formed when (E)- and (Z)-α-alkyl-β-nitrostyrenes react with adamantyl radical under similar conditions. Only (Z)-alkene was observed when either (E)- or (Z)-α-t-butyl-β-nitrostyrene react with adamantyl radical.
The Michael addition reactions of β-nitrostyrenes with
4-pentene-1-magnesium bromide or 3-butene-1-magnesium bromide
generated nitronates. At room temperature, fair good yields of isoxazoline
derivatives were obtained when nitronates were treated with ethyl chloroformate in the presence of catalytic amount of 4-dimethylaminopyridine (DMAP) in one-pot. The ratios of trans and cis-[4.3.0] isoxazoline were from 1:3.00 to 1:4.06 and the ratios of trans and cis-[3.3.0] isoxazoline were >99:1. The formation of [4.3.0] isoxazoline is proposed to proceed
via intramolecular nitrile oxide-olefin cycloaddition (INOC).Compounds,obtained from the trapping of the nitrile oxides by ethyl chloroformate could be isolated. The mechanism of the generation [3.3.0] isoxazoline is proposed to proceed via intramolecular alkoxy-carbonyl nitronate-olefin cycloaddtion (IAOC) to form intermediates N-(ethoxycarbonyl)isoxazolidines and then eliminate EtOH and CO2 (or EtOCO2H) to yield the final products.
Finally, a series of ring and side-chain regioisomers of arylethylamines are investigated by GC-MS. Regioisomerization at the aromatic ring and the alkyl side-chain in the arylethylamines produces a variety of compounds that have very similar analytical properties. The specific identification of one of these compounds in forensic drug sample depends on the ability to eliminate other regioisomers as possible interfering substances.
The mass spectra for the underivatized amines are very similar and do not provide sufficient information to differentiate among the side-chain or ring regioisomers. Preparation the pentafluoropropionyl- amide of the amines produces derivatives that could show mass spectra fragmentation in identifying the position of methoxy groups attached to the aromatic ring and the number of carbons attached directly to the aromatic ring.
1. (a) Seebach, D.; Giorgio, C.; Knochel, P. Tetrahedron 1985, 41, 4861. (b) Ashwood, M. S.; Bell, L. A.; Houghton, P. G.; Wright, S. H. B. Synthesis 1988, 379. (c) Langer, W.; Seebach, D. Helv. Chim. Acta 1979, 62, 1710. (d) Pecunioso, A.; Menicagli, R. J. Org. Chem. 1989, 54, 2391. (e) Jubert, C.; Knochel, P. J. Org. Chem. 1992, 57, 5431. (f) Shitov, O. P.; Ioffe, S. L.; Leont,eva, L. M.; Tartakovskii, V. A. Gen. Chem. USSR 1973, 43, 1118.
2. (a) Seebach, D.; Schafer, H.; Schmidt, B.; Schreiber, M. Angew. Chem. Int. Ed. Engl. 1992, 31, 1587. (b) Hu, Y.; Yu, J.; Yang, S.; Wang, J-X.; Yin, Y. Synlett. 1998, 1213. (c) Hu, Y.; Yu, J.; Yang, S.; Wang, J-X.; Yin, Y. Synth. Commun. 1999, 29, 1157.
3. Namboothiri, I. N. N.; Hassner, A. J. Organometal. Chem. 1996, 69, 518.
4. Russell, G. A.; Yao, C.-F. Heteroatom Chemistry 1992, 3, 209.
5. Han, Y.; Huang, Y.-Z.; Zhou, C.-M. Tetrahedron Lett. 1996, 37, 3347.
6. Barton, D. H. R.; Togo, H.; Zard, S. Z. Tetrahedron 1985, 41, 5507.
7. Chu, C,-M.; Liu, J.-T.; Lin, W.-W.; Yao, C.-F. J. Chem. Soc. Perkin Trans. 1 , 1999, 47.
8. (a) Perrin, J. C.; Keller, R. N. J. Am. Chem. Soc. 1958, 80, 1823. (b) Brown, H. C.; Kabalka, G. W. J. Am. Chem. Soc. 1970, 92, 712.
9. Scaiano, J. C.; Stewart, L. C. J. Am. Chem. Soc. 1983, 105, 3609..
10. Barton, D. H. R.; Dorchak, J.; Jaszberenyi, J. Cs. Tetrahedron Lett. 1993, 34, 8051
11. Brown, H. C.; Kabalka, G. W. J. Am. Chem. Soc. 1970, 92, 714.
12. (a) Davies, A. C.; Roberts, B. P. Acc. Chem. Res. 1972, 5, 387.
(b) Brown, H. C.; Midland, M. M.; Kabalka, G. W. J. Am. Chem. Soc.
1971, 93, 1024
13. Bartlett, P. D.; Funahashi, T. J. Am. Chem. Soc. 1971, 93, 1024.
14. (a) Nitroalkanes and Nitroalkenes in Synthesis. Tetrahedron 1990, 46, 7313. (b) Barett, A. G. M. Chem. Soc. Rev. 1991, 20, 95.
15. (a) Tamura, R.; Kamimura, A.; Ono, N. Synthesis 1991, 423. (b) Kornblumn, N. Aldrichim. Acta 1990, 23, 71. (c) Seebach, D.; Coilvin, E. W.; Lehr, F.; Weller, T. Chimia 1979, 33, 1; and references therein.
16. (a) Collman, J. P.; Hegedus, L. S.;Norton, J. R.; Finke, R. G. In Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; Chapter 14.4-14.5, pp 710-727. (b) Heck, R. F. In Palladium in Organic Synthesis; Academic Press: New York,1985.
17. (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. (Washington, D. C.) 1989, 38, 863. (b) Boutagy, R.; Thomas, R. Chem. Rev. 1974, 74, 87. (c) Heck, R. F. Org. React. 1982, 27, 345. (d) Ager, D. J. Org. React. 1990, 38, 1. (e) Hassner, A.; Stumer, B. Organic Synthesis based on Name Reactions and Unnamed Reactions, Tetrahedron; Organic Chemistry Series, Vol. 11, Elsevier: New York, 1994; and references therein.
18. Rabjohn, N. In Organic Syntheses, 2nd ed.; Blatt, A. H., Ed.; John Wiley & Sons: New York, 1963; Collect. Vol. Ⅳ, pp 573.
19. Bourguignon, J.; Nard, G. L.; Queguiner, G. Can. J. Chem. 1985, 23, 2354.
20. Bordwell, F. G.; Garbisch, E. W., Jr. J. Org. Chem. 1962, 27, 3049.
21. Ohta, H.; Kobayashi, N; Ozaki, K. J. Org. Chem. 1989, 54, 1802.
22. Brown, H. C.; Racherla, U. S. J. Org. Chem. 1986, 51, 427.
23. (a) Paquette, L. A.; Maynard, G. D. J. Org. Chem. 1989, 54, 5054. (b) Zioudrou, C.; Moustakali-Mavridis, I.; Chrysochou, P.; Karabatsos, G. J. Tetrahedron 1978, 34, 3181. (c) James, B. R.; Young, C. G. J.Organomet. Chem. 1985, 285, 321.
(1) (a) Corey, E. J.; Estreicher, H. J. Am. Chem. Soc. 1978, 100, 6294. (b) Seebach, D.; Colvin, E. W.; Weller, T. Chimia 1979, 33, 1. (c) Barrett, A. G. M.; Graboski, G. G. Chem. Rev. 1986, 86, 751. (d) Rosini, G.; Ballini, R. Synthesis 1988, 833. (e) Nitroalkanes and Nitroalkenes in Synthesis Tetrahedron 1990, 46, 7313. (f) Barrett, A. G. M. Chem. Soc. Rev. 1991, 20, 95.
(2) (a) Seebach, D.; Schafer, H.; Schmidt, B.; Schreiber, M. Angew. Chem., Int. Ed. Engl. 1992, 31, 1587. (b) Hu, Y.; Yu, J.; Yang, S.; Wang, J.-X.; Yin, Y. Synlett. 1998, 1213. (c) Hu, Y.; Yu, J.; Yang , S.; Wang, J.-X.; Yin, Y. Synth. Commun. 1999, 29, 1157.
(3) Russell, G. A.; Yao, C.-F. Heteroatom Chem. 1992, 3, 209.
(4) Namboothiri, I. N. N.; Hassner, A. J. Organomet. Chem. 1996, 518, 69.
(5 ) Han, Y.; Huang, Y.-Z.; Zhou, C.-M. Tetrahedron Lett. 1996, 37, 3347.
(6) Chu, C.-M.; Liu, J.-T.; Lin, W.-W.; Yao, C.-F. J. Chem. Soc. Perkin Trans. 1 1999, 47.
(7) (a) Kohler, E. P.; Stone, J. R. J. Am. Chem. Soc. 1930, 52, 761. (b) Buckley, G. D. J. Chem. Soc. 1947, 1494. (c) Buckley, G. D.; Ellery, E. J. J. Chem. Soc. 1947, 1497. (c) Ashwood, M. S.; Bell, L. A.; Houghton, P. G.; Wright, S. H. B. Synthesis 1988, 379. (d) Yao, C.-F.; Chen, W.-W.; Lin, Y.-M. Tetrahedron Lett. 1996, 37, 6399. (e) Yao, C.-F.; Kao, K.-H.; Liu, J.-T.; Chu, C.-M.; Wang, Y.; Chen, W.-C.; Lin, Y.-M.; Lin, W.-W.; Yan, M.-C.; Liu, J.-Y.; Chuang, M.-C.; Shiue, J.-L. Tetrahedron 1998, 54, 791. (f) Liu, J.-T.; Lin, W.-W.; Jang, J.-J.; Liu, J.-Y.; Yan, M.-C.; Hung, C.; Kao, K.-H.; Wang, Y.; Yao, C.-F. Tetrahedron 1999, 55, 7115.
(8) Yao, C.-F.; Chu, C.-M.; Liu, J.-T. J. Org. Chem. 1998, 63, 719.
(9) Smadja, W. Synlett. 1994, 1.
(10) (a) Suzuki, A.; Nozawa, S.; Harada, M.; Itoh, M.; Brown, H. C.; Midland, M. M. J. Am. Chem. Soc. 1971, 93, 1508. (b) Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 2547. (c) Nozaki, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1041. (d) Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti, P. J. Org. Chem. 1999, 64, 9189. (e) Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T. J. Org. Chem. 2000, 65, 176. (f) Wu, B.; Avery, B. A.; Avery, M. A. Tetrahedron Lett. 2000, 41, 3797. (g) Miyabe, H.; Ueda, M.; Naito, T. J. Org. Chem. 2000, 65, 5043. (h) Miyabe, H.; Fujii, K.; Goto, T.; Naito, T. Org. Lett. 2000, 2, 4071. (i) Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima, K.; Omoto, K.; Fujimoto, H. J. Am. Chem. Soc. 2000, 122, 11041.
(11) (a) Tashtoush, H. I.; Sustmann, R. Chem. Ber. 1992, 125, 287. (b) Tashtoush, H. I.; Sustmann, R. Chem. Ber. 1993, 126, 1759.
(12) Bräse S.; Waegell, B.; de Meijere, A. Synthesis 1998, 148.
(13) Yamataka, H.; Takatsuka, T.; Hanafusa, T. J. Org. Chem. 1996, 61, 722.
(14) (a) Gung, B. W.; le Noble, B. Chem. Rev. 1999, 99, 1067. (b) Tomoda, S. Chem. Rev. 1999, 99, 1243. (c) Cieplak, A. S. Chem. Rev. 1999, 99, 1265. (d) Ohwada, T. Chem. Rev. 1999, 99, 1337. (e) Gung, B. W. Chem. Rev. 1999, 99, 1377. (f) Kaselj, M.; Chung, W.-S.; le Noble, W. J. Chem. Rev. 1999, 99, 1387. (g) Adcock, W.; Trout, N. A. Chem. Rev. 1999, 99, 1415. (h) Mehta, G.; Chandrasekhar, J. Chem. Rev. 1999, 99, 1437. (i) Wipf, P.; Jung, J.-K. Chem. Rev. 1999, 99, 1469. (j) Kao, K.-H.; Sheu, R.-S.; Chen, Y.-S.; Lin, W.-W.; Liu, J.-T.; Yao, C.-F. J. Chem. Soc. Perkin Trans. 1 1999, 283. (k) Tsai, T.-L.; Chen, W.-C.; Yu, C.-H.; le Noble, W. J.; Chung, W.-S. J. Org. Chem. 1999, 64, 1099.
(15) Denmark, S. E.; Marcin, L. R. J. Org. Chem. 1993, 58, 3850.
(16) (a) Miller, D. B.; Flanagan, P. W.; Shechter, H. J. Org. Chem. 1976, 41, 2112. (b) Ohwada, T.; Ohta, T.; Shudo, K. J. Am. Chem. Soc. 1986, 108, 3029. (c) Burdisso, M.; Gamba, A.; Gandolfi, R.; Perarello, P. Tetrahedron 1987, 43, 1835.
(17) Brown, H. C.; Racherla, U. S. J. Org. Chem. 1986, 51, 427.
(18) (a) Geluk, H. W. Synthesis 1972, 374. (b) Adcock, W.; Trout, N. A. J. Org. Chem. 1991, 56, 3229.
(19) (a) Hauser, C. F.; Brooks, T. W.; Miles, M. L; Raymond, M. A.; Butler, G. B. J. Org. Chem. 1963, 28, 372. (b) Hill, E. A.; Engel, M. R. J. Org. Chem. 1971, 36, 1356. (c) Fujiwara, Y.; Kuromaru, H.; Taniguchi, H. J. Org. Chem. 1984, 49, 4309. (d) Bessmertnykh, A. G.; Blinov, K. A.; Grishin, Y. K.; Donskaya, N. A.; Tveritinova, E. V.; Yureva, N. M.; Beletskaya, I. P. J. Org. Chem. 1997, 62, 6069. (e) Doering, W. von E.; Benkhoff, J.; Carleton, P. S.; Pagnotta, M. J. Am. Chem. Soc. 1997, 119, 10947.
(20) (a) Jabri, N.; Alexakis, A.; Normant, J. F. Bull. Soc. Chim. Fr. 1983, II, 321. (b) Muraoka, K.; Nojima, M.; Kusabayashi, S.; Nagase, S. J. Chem. Soc. Perkin Trans. 2 1986, 761. (c) Tanaka, J.; Nojima, M.; Kusabayashi, S.; Nagase, S. J. Chem. Soc. Perkin Trans. 2 1987, 673.
(21) (a) Hoshi, M.; Masuda, Y.; Arase, A. Bull. Chem. Soc. Jpn. 1986, 59, 3985. (b) Baudin, J. B.; Hareau, G.; Julia, S. A,; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 856. (c) Vedejs, E.; Fleck, T. J. J. Am. Chem. Soc. 1989, 111, 5861. (d) Shen, Y.; Yao, J. J. Chem. Research (S) 1996, 394. (e) Xiang, J.; Jiang, W.; Gong, J.; Fuchs, P. L. J. Am. Chem. Soc. 1997, 119, 4123.
(22) Alesso, E. N.; Tombari, D. G.; Moltrasio, G. Y.; Aguirre, J. M. Can. J. Chem. 1987, 65, 2568.
(23) Kashihara, H.; Suemune, H.; Tsunehiro, N.; Sakai, K. Chem. Pharm. Bull. 1990, 38, 2581.
(24) Buss, A. D.; Warren, S. J. Chem. Soc. Perkin Trans. 1 1985, 2307. (b) Kawashima, T.; Ishii, T.; Inamoto, N. Bull. Chem. Soc. Jpn. 1987, 60, 1831. (c) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199.
(25) (a) Yuan, T.-M.; Luh, T.-Y. J. Org. Chem. 1992, 57, 4550. (b) Kirmse, W.; Konrad, W.; Schnitzler, D. J. Org. Chem. 1994, 59, 3821. (c) Ishino, Y.; Mihara, M.; Nishihama, S.; Nishiguchi, I. Bull. Chem. Soc. Jpn. 1998, 71, 2669.
1. a) Corey, E. J.; Estreicher, H. J. Am. Chem. Soc. 1978, 100, 6294.
(b) Seebach, D.; Colvin, E. W.; Well, T. Chimia 1979, 33, 1.
(c) Barrett, A. G. M.; Graboski, G. G. Chem. Rev. 1986, 86, 751.
(d) Rosini, G.; Ballini, R. Synthesis 1988, 833.
(e) Several articles in Tetrahedron Symposia-in-Print 41, “Nitroalkanes and Nitroalkenes in Synthesis”, Tetrahedron 1990, 46 (21), Barrett, A. G. M. Ed.
(f) Barrett, A. G. M. Chem. Soc. Rev. 1991, 20, 95.
(2) (a) Torsell, K. B. G. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH; New York, 1988.
(b) Gottlieb, L.; Hassner, A. J. Org. Chem. 1995, 60, 3759.
(c) Dehaen, W.; Hassner, A. Tetrahedron Lett. 1990, 31, 743.
(3) (a) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339.
(b) Basel, Y.; Hassner, A. Synthesis 1997, 309.
(c) Maugein, N.; Wagner, A.; Mioskowski, C. Tetrahedron Lett. 1997, 38, 1547.
(4) (a) Kumaran, G.; Kulkarni, G. H. Tetrahedron Lett. 1994, 35, 5517.
(b) Kumaran, G.; Kulkarni, G. H. Tetrahedron Lett. 1994, 35, 9099.
(c) Kumaran, G.; Kulkarni, G. H. J. Org. Chem. 1997, 62, 1516.
(5) (a) Padwa, A. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.; Ed.; Wiley-Interscience; New York, 1984, Vol. 2.
(b) Curran, D. P. Advances in Cycloaddition; Vol. 1, JAI Press; Greenwich, CT, 1988; p 129-189.
(6) (a) Hassner, A.; Maurya, R.; Padwa, A.; Bullock, W. H. J. Org. Chem. 1991, 56, 2775.
(b) Hassner, A.; Maurya, R.; Mesko, E. Tetrahedron Lett. 1988, 29, 5313.
(c) Hassner, A.; Maurya, R. Tetrahedron Lett. 1989, 30, 5803.
(d) Grigg, R. Chem. Soc. Rev. 1987, 16, 89.
(e) Grigg, R.; Markandu, J.; Perrior, T.; Surendrakumar, S.; Warnock, W. J. Tetrahedron Lett. 1990, 31, 559.
(7) (a) Buckley, G. D. J. Chem. Soc. 1947, 1494.
(b) Buckley, G. D.; Ellery, E. J. Chem. Soc. 1947, 1497.
(c) Ashwood, M. S.; Bell, L. A.; Houghton, P. G.; Wright, S. H. B. Synthesis 1988, 379.
(8) (a) Yao, C.-F.; Chen, W.-C.; Lin Y.-M. Tetrahedron Lett. 1996, 37, 6339.
(b) Yao, C.-F.; Yang, C.-S.; Fang, H.-Y. Tetrahedron Lett. 1997, 38, 6419.
(c) Yao, C.-F.; Kao, K.-H.; Liu, J.-T.; Chu, C.-M.; Wang, Y.; Chen, W.-C.; Lin ,Y.-M; Lin, W.-W.; Yan, M.-C.; Liu, J.-Y.; Chuang, M.-C.; Shiue, J.-L. Tetrahedron 1998, 54, 791.
(d) Kao, K.-H.; Yang, C.-S; Liu, J.-T.; Lin, W.-W.; Fang, H.-Y.; Yao, C.-F.; Chen, K. Tetrahedron 1998, 54, 13997.
(9) Namboothiri, I. N. N.; Hassner, A.; Gottlieb, H. E. J. Org. Chem. 1997, 62, 485.
(10) (a) Christl, M.; Huisgen, R. Chem. Ber. 1973, 106, 3345.
(b) Just, G.; Dahl, K. Tetrahedron 1968, 24, 5251.
(c) Rai, K. M. L.; Linganna, N.; Hassner, A.; Murthy, C. A. Org. Prep. Proced. Int. 1992, 24, 91.
(11) (a) Grundmann, C.; Dean, J. M. J. Org. Chem. 1965, 30, 2809.
(b) Hassner, A.; Rai, K. M. L. Synthesis 1989, 57.
(c) Kim, J. N.; Ryu, E. K. Synth. Commun. 1990, 20, 1373.
(12) Shimizu, T.; Hayashi, Y.; Shibafuchi, H.; Teramura, K. Bull. Chem. Soc. Jpn. 1986, 59, 2827.
(13) Armstrong, P.; Grigg, R.; Heaney, F.; Surendrakumar, S.; Warnock, W. J. Tetrahedron 1991, 47, 4495.
(14) (a) Tufariello, J. J.; Ali, Sk. A. Tetrahedron Lett. 1978, 4647.
(b) Tufariello, J. J.; Puglis, J. M. Tetrahedron Lett. 1986, 27, 1265.
(c) Brudisso, M.; Gandolfi, R.; Grünanger, P.; Rastelli, A. J. Org. Chem. 1990, 55, 3427.
(d) Jung, M. E.; Gervay, J. Chemtracts 1990, 3, 284.
(15) Bordwell, F. G.; Garbisch, Jr. E. W. J. Org. Chem. 1962, 27, 3049.
(16) (a) Wollenberg, R. H.; Miller, S. J. Tetrahedron Lett. 1978, 3219.
(b) Knochel, P.; Seebach, D. Synthesis 1982, 1017.