簡易檢索 / 詳目顯示

研究生: 王信介
Hsin-Chieh Wang
論文名稱: Re3Ga5O12塊材與Ba(Mg1/3Ta2/3)O3薄膜之光譜性質研究
Optical studies of Re3Ga5O12 (Re = Nd,Sm, Eu, and Dy) bulk andBa(Mg1/3Ta2/3)O3 thin films
指導教授: 劉祥麟
Liu, Hsiang-Lin
胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 128
中文關鍵詞: 陶瓷微波光譜石榴石
英文關鍵詞: ceramics, microwave, optical properties, garnet
論文種類: 學術論文
相關次數: 點閱:238下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究不同稀土元素取代之 Re3Ga5O12 (Re = Nd, Sm, Eu, and
    Dy) 塊材以及不同成長條件之 Ba(Mg1/3Ta2/3)O3 薄膜的光譜性質,並
    探討紅外光譜特徵與其微波特性的關連。
    首先,我們觀察到 (i) Re3Ga5O12 塊材具有 14 個遠外紅光區聲子
    振動,並推算出離子晶格貢獻的介電常數與品質因子;(ii) 在 200 cm-1
    ~ 800 cm-1 的鎵四面體的內膜振動聲子決定了大部份的介電特性,隨
    著鑭系收縮效應聲子振動頻率呈現合理的藍移,其中介電貢獻第一、
    二名的 9、10 號聲子 (同為鎵四面體非對稱彎曲振動模),其半高寬
    趨勢與微波量測所得的品質因子趨勢呈高度負相關,可說 Re3Ga5O12
    塊材複雜的結構中鎵四面體主導了其主要的介電性質。
    再者,我們觀察到 (i) Ba(Mg1/3Ta2/3)O3 薄膜巨觀排列屬於無序的
    立方晶系結構 ( Pm3m ),微細結構則介於無序立方晶系及有序六角
    晶系結構 ( P3m1) 間的過渡態,此外隨著鍍膜時間的增加,我們發現
    到 BaCO3 雜相的生成,這影響了Ba(Mg1/3Ta2/3)O3 薄膜品質;(ii) 利
    用紅外光光譜推算薄膜的介電特性,薄膜靜介電常數最高可達到
    13.27,與塊材 (約 25) 有段距離,而品質因子最好僅為 9980 GHz,
    與塊材 (約 70000 GHz) 相距甚遠。

    We study the optical properties of Re3Ga5O12 (Re = Nd, Sm, Eu, and Dy)
    bulk and Ba(Mg1/3Ta2/3)O3 films with different preparation conditions. And we
    discuss the correlation between their infrared characteristics and microwave
    properties.
    First, we obtain the following results. (i) Re3Ga5O12 bulk has fourteen
    infrared phonons and we calcaulate the dielectric constant and Q×f factor
    which are contributed by ionic lattice. (ii) The internal mode phonons of the
    GaO4 tetrahedron within 200 cm-1 ~ 800 cm-1 decide the most part of dielectric
    properties. With the Lanthanide contraction effect, the phonons exhibit blue
    shift for their vibration frequency. The linewidths of No.9 and No.10 phonons,
    which are GaO4 asymmetric bending mode have highly negative correlation
    with quality factor. We can say the GaO4 tetrahedron leads main dielectric
    characteristics among the complex structure of Re3Ga5O12.
    Moreover, we find the following results. (i) The macroscopic arrangement
    of the Ba(Mg1/3Ta2/3)O3 films belong to disordered cubic system and the
    microstructure of the films shows a transition-state between disordered cubic
    and ordered hexagonal system. Besides, we observe the growth of secondary
    phase (BaCO3
    phase) with the increasement of depositon time. (ii) The biggest
    static dielectric constant of the Ba(Mg1/3Ta2/3)O3 film determined from the
    far-infrared spectra is 13.27, smaller than the value of 25 in bulk materials.
    However, the biggest quality factor Q × f at 1 THz is 9880 GHz, which is
    markedly smaller than that of bulk about 70000 GHz.

    中文摘要 ………………………………………………………… i 英文摘要 ………………………………………………………… ii 目錄 ……………………………………………………………… iii 表目錄 …………………………………………………………… v 圖目錄 …………………………………………………………… vii 第一章 緒論 …………………………………………………… 1 第二章 研究背景 ……………………………………………… 7 2-1 Re3Ga5O12 ……………………………………………… 7 2-2 Ba(Mg1/3Ta2/3)O3 …………………………………… 10 第三章 實驗儀器設備及基本原理 …………………………… 17 3-1 光譜儀系統 …………………………………………… 17 3-2 光譜分析原理…………………………………………… 21 第四章 實驗樣品特性 ………………………………………… 35 4-1 Re3Ga5O12 塊材 ……………………………………… 35 4-2 Ba(Mg1/3Ta2/3)O3 薄膜 ……………………………… 38 第五章 實驗結果與討論 ……………………………………… 63 5-1 Re3Ga5O12 塊材的光譜研究 ………………………… 63 5-2 Ba(Mg1/3Ta2/3)O3 薄膜的光譜研究 ………………… 70 第六章 結論與未來展望 ……………………………………… 114 參考文獻 ………………………………………………………… 118 附錄 ……………………………………………………………… 126

    [1] H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, and Y. Tohdo
    “Microwave-millimeterwave dielectric materials”, Key Eng. Mater. 269, 195 (2004).
    [2] 曾淵泰,國立臺灣師範大學物理研究所碩士論文,96年6月。
    [3] H. Ohsato, T. Tsunooka, M. Ando, Y. Ohishi, Y. Miyauchi, and K.
    Kakimoto “Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant”, J. Korean Ceram. Soc. 40, 350 (2003).
    [4] 電子材料專輯,電子月刊第十一卷第四期四月刊 (2005)。
    [5] 翁敏航、楊茹媛、李義傑,高介電材料之微波特性量測(一),奈
    米通訊第十一卷第一期二月刊 (2004)。
    [6] W. Wersing “Microwave ceramics for resonators and filters”, Current
    Opinion in Solid State and Materials Science 1, 715 (1996).
    [7] J. C. Kim, M. H. Kim, S. Nahm, J. H. Paik, J. H. Kim, and H. J. Lee
    “Synthesis and microwave dielectric properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) ceramics”, J. Am. Ceram. Soc. 90, 641 (2007).
    [8] G. Menzer Z. Kristallogr. 63, 157 (1926).
    [9] G. Geller “Crystal chemistry of the garnets”, Z. Kristallogr. 125, 1 (1967).
    [10] G. A. Novak and G. V. Gibbs “The crystal chemistry of the silicate garnets”, Am. Miner. 56, 791 (1971).
    [11] A. Beltran, J. Andres, J. A. Igualada, and J. Carda “Garnet crystal structures. An ab initio perturbed ion study”, J. Solid State Chem. 99, 6493 (1995).
    [12] K. A. Gschneidner, Jr. and L. Eyring , Handbook of the Physics and
    Chemistry of Rare Earths, North Holland, Vol. 5, 651 1982.
    [13] A. Roosen “Ceramic substrates : Trends in materials and applications”, Ceram. Trans. 106, 479 (2000).
    [14] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. Kakimoto “Controlled temperature coefficient of resonant frequency of Al2O3–TiO2 ceramics by annealing treatment”, Jpn. J. Appl. Phys. 43, L749 (2004).
    [15] T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Ando, and Y. Higashida “Development of forsterite with high Q and zero temperature coefficient τf for millimeterwave dielectric ceramics”, Key Eng. Mater. 269, 199 (2004).
    [16] T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato “Microwave dielectric properties of forsterite-based solid solutions”, J. Eur. Ceram. Soc. 26, 2097 (2006).
    [17] T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, and H. Ohsato “Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics”, J. Eur. Ceram. Soc. 23, 2573 (2004).
    [18] A. Yoshida, H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida “Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4-xMx)(Nb2-ySby)O9 (M = Zn and Ni) solid solutions”, J. Eur. Ceram. Soc. 24, 1765 (2004).
    [19] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss”, J. Eur. Ceram. Soc. 23, 2485 (2004).
    [20] A. Yokoi, H. Ogawa, A. Kan, H. Ohsato, and Y. Higashida “Microwave dielectric properties of Mg4Nb2O9–3.0 wt.% LiF ceramics prepared with CaTiO3 additions”, J. Eur. Ceram. Soc. 25, 2871 (2006).
    [21] Y. Guo, H. Ohsato, and K. Kakimoto “Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeterwave”, J. Eur. Ceram. Soc. 26, 1827 (2006).
    [22] K. P. Surendran, N. Santha, P. Mohanan, and M. T. Sebastian “Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications”, Eur. Phys. J. B 41, 301 (2004).
    [23] R. ROY Ibid. 27, 581 (1954).
    [24] F. Galasso and J. Pyle “Ordering in compounds of the A(B'0.33Ta0.67)O3 type”, Inorg. Chem. 2, 482 (1963).
    [25] R. Guo, A. S. Bhalla, and L. E. Cross “Ba(Mg1/3Ta2/3)O3 single crystal fiber grown by the laser heated pedestal growth technique”, J. Appl. Phys. 75, 4704 (1994).
    [26] H. Tamura, D. A. Sagala, and K. Wakino “Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure”, Jpn. J. Appl. Phys. 25, 787 (1986).
    [27] M. Sugiyama and T. Nagai “Anomaly of dielectric constant of (Ba1−xSrx)(Mg1/3Ta2/3)O3 solid solution and its relation to structural change”, Jpn. J. Appl. Phys. 32, 4360 (1993).
    [28] T. Shimada “Far-infrared reflection and microwave properties of Ba([Mg1-xZnx]1/3Ta2/3)O3 ceramics”, J. Eur. Ceram. Soc. 24, 1799 (2004).
    [29] S. Nomura “Ceramics for microwave dielectric resonator”, Ferroelectrics 49, 61 (1983).
    [30] H. Matsumoto, H. Tamura, and K. Wakino “Ba(Mg,Ta)O3-BaSnO3 high-Q dielectric resonator”, Jpn. J. Appl. Phys. 30, 2347 (1991).
    [31] E. S. Kim and K. H. Yoon “Effect of nickel on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3”, J. Mater. Sci. 29, 830 (1994).
    [32] K. P. Surendran, M. T. Sebastian, P. Mohanan, and M. V. Jacob “The effect of dopants in the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics”, J. Appl. Phys. 98, 094114 (2005).
    [33] Y. Fang, A. Hu, S. Ouyang, and J. J. Oh “The effect of calcination on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3”, J. Eur. Ceram. Soc. 21, 2745 (2001).
    [34] N. Ichinose and T. Shimada “Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 systems”, J. Eur. Ceram. Soc. 26, 1755 (2006).
    [35] 陳漢珍、翁敏航,高介電材料之微波特性量測(二),奈米通訊 第十一卷第二期二月刊 (2004)。
    [36] B. H. Hoerman, G. M. Ford, L. D. Kaufmann, and B. W. Wessels “Dielectric properties of epitaxial BaTiO3 thin films”, Appl. Phys. Lett. 73, 2248 (1998).
    [37] P. K. Petrov, E. F. Carlsson, P. Larsson, M. Friesel, and Z. G. Ivanov
    “Improved SrTiO3 multilayers for microwave application: Growth and properties”, J. Appl. Phys. 84, 3134 (1998).
    [38] Y. A. Boikov and T. Claeson “High tunability of the permittivity of YBa2Cu3O7 – Ә/SrTiO3 heterostructures on sapphire substrates”, J. Appl. Phys. 81, 3232 (1997).
    [39] X. Wang, U. F. Helmersson, S. Olafsson, S. Rudner, L. Wernlund, and S. Gevorgian “Growth and field dependent dielectric properties of epitaxial Na0.5K0.5NbO3 thin films”, Appl. Phys. Lett. 73, 927 (1998).
    [40] C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi “Signal strength enhancement and bandwidth tuning in moving space charge field photodetectors using alternating bias field”, Appl. Phys. Lett. 72, 100 (1998).
    [41] E. Carlsson and S. Gevorgian “Effect of enhanced current crowding in a CPW with a thin ferroelectric film”, Electron. Lett. 33, 145 (1997).
    [42] M. D. Kingery and H. K. Barsoum, Fundamental of Ceramics, The McGraw-Hill Companies Inc. 526 1997.
    [43] Y. H. Chu, S. J. Lin, K. S. Liu and I. N. Lin “Properties of Ba(Mg1/3Ta2/3)O3 Thin Films Prepared by Pulsed-Laser Deposition”, Jpn. J. Appl. Phys. 42, 7428 (2003).
    [45] Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971第四版上冊。
    [46] 毛光興著,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
    [47] 李冠卿著,近代光學,聯經出版社,中華民國七十七年九月初版。
    [48] H. Sawada “Electron density study of garnets: Z3Ga5O12 ; Z = Nd, Sm, Gd, Tb”, J. Solid State Chem. 132, 300 (1997).
    [49] 呂杰翰,國立臺灣師範大學物理研究所碩士論文,96年7月。
    [50] E. Antic-Fidancev, J. Hölsä, M. Lastusaari, and A. Lupei “Dopant-
    host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions”, Phys. Rev. B 64, 195108 (2001).
    [51] G. Patzke, R. Wartchow, and M. Binnewies “Crystal structure of triholmium pentagallium dodecaoxide, Ho3Ga2(GaO4)3 and of tridysprosium pentagallium dodecaoxide, Dy3Ga2(GaO4)3”, Zeitschrift fuer Kristallographie - New Crystal Structures 214, 143 (1999).
    [52] S. Zeidenfeld “The Hilger X-ray crystallograph and the cubic-crystal analyser”, Proc. Phys. Soc. 43, 512 (1931).
    [53] J. C. Kim, M. H. Kim, S. Nahm, J. H. Paik, J. H. Kim, and H. J. Lee
    “Microwave dielectric properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy and Yb) ceramics and effect of TiO2 on the microwave dielectric properties of Sm3Ga5O12 ceramics”, J. Eur. Ceram. Soc. 27, 2865 (2007).
    [54] M. H. Liang, C. G. Chiuo, Y. N. Tsai, C. T. Hu, and I. N. Lin “Improvement on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 material prepared via a two-step process”, Ferroelectrics 238, 645 (2000).
    [55] 梁振偉,國立清華大學材料科學工程研究所碩士論文,92年6月。
    [56] S. Janaswamy, G. S. Murthy, E. D. Dias, and V. R. K. Murthy “Structural analysis of BaMg1/3(Ta,Nb)2/3O3 ceramics”, Materials Letters 55, 414 (2002).
    [57] W. Wang, S. Wu, P. Sun, and Y. Zhang “Solution liquid-phase coating processing and microwave characteristics of Ba(Mg1/3Ta2/3)O3 dielectrics”, Mater. Sci. Eng. B 116, 91 (2005).
    [58] P.Pasierb, S. Komornicki, M. Rokita and M. Rekas “Structural properties of LiCO3 - BaCO3 system derived from IR and Raman Spectroscopy”, Journal of Molecular Structure 596, 151 (2001).
    [59] J. P. Hurrell, S. P. S. Porto, and R. P. Bauman “Optical phonons of yttrium aluminum garnet”, Phys. Rev. 173, 3, 851 (1968).
    [60] B.A. Kolesov and C.A. Geiger “Raman spectra of silicate garnets”, Phys. Chem. Minerals 25, 142 (1998).
    [61] M. Chen, D. B. Tanner, and J. C. Nino “ Infrared study of the phonon modes in bismuth pyrochlores”, Phys. Rev. B 72, 054303 (2005).
    [62] T. Chaplin, G. D. Price, and N. L. Ross “Computer simulation of the infrared and Raman activity of pyrope garnet, and assignment of calculated modes to specific atomic motions”, American Mineralogist 83, 841 (1998).
    [63] R. K. Moore , W. B. White, and T. V. Long “Vibrational spectra of
    the common silicates: I. The garnets”, American Mineralogist, 56, 54
    (1971).
    [64] R. K. Moore , W. B. White, and T. V. Long “Optical absorption of Y3Al5O12 from 10 to 55000 cm-1 wave numbers”, Phys. Rev. 177, 1308 (1969).
    [65] W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. Howarth “ Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2”, Phys. Rev. 126, 1710 (1962).
    [66] J. Zhou, Q. X. Su, K. M. Moulding, and D. J. Barber “Sol-gel derived Ba(Mg1/3Ta2/3)O3 thin films: preparation and structure”, J. Mater. Res. 12, 596 (1996).
    [67] H. F. Cheng, C. T. Chia, H. L. Liu, M. Y. Chen, Y. T. Tzeng, and I. N. Lin “Correlation of the phonon characteristics and microwave dielectric properties of the Ba(Mg1/3Ta2/3)O3 materials”, J. Eur. Ceram. Soc. 27, 2893 (2007).
    [68] I. G. Siny and R. S. Katiyar “Cation arrangement in the complex perovskites vibration spectra”, J. Raman Spectrosc. 29, 385 (1998).
    [69] C. T. Chia, Y. C. Chen, and H. F. Cheng “Correlation of microwave properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3 – (1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”, J. Appl. Phys. 94, 3360 (2003).

    QR CODE