簡易檢索 / 詳目顯示

研究生: 藍于堯
Lan, Yu-Yao
論文名稱: 雲模式對台灣梅雨降水系統雲微物理特徵模擬能力之評估研究
An evaluation on a cloud model's capability in simulating the microphysical characteristics of Mei-yu precipitation systems in Taiwan
指導教授: 王重傑
Wang, Chung-Chieh
口試委員: 簡芳菁
Jian, Fang-Jing
張偉裕
Chang, Wei-Yu
王重傑
Wang, Chung-Chieh
口試日期: 2021/09/08
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 雲微物理水象粒子雙偏極化雷達
英文關鍵詞: SoWMEX, IOP-8, IOP-3, CReSS
DOI URL: http://doi.org/10.6345/NTNU202101658
論文種類: 學術論文
相關次數: 點閱:115下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究於2008年西南氣流觀測與豪雨實驗(Southwest Monsoon Experiment, SoWMEX)期間,選取三個伴隨梅雨鋒面不同類型的強降雨事件進行模擬研究,以評估模式對其動力結構與雲微物理特徵的模擬能力。此三個不同綜觀條件下的個案為:(一) IOP(intensive observing period)-8:6月14日的鋒前颮線(Pre-Frontal Squall Line, PFSL)、(二)6月16日伴隨西南氣流的中尺度對流系統(Southwesterly monsoon Mesocale Convective System, SWMCS)以及(三) IOP-3:5月31日的鋒面對流。利用S-POL(S-band polarimetric Doppler radar system)偏極化雷達觀測資料所獲得的雲微物理資訊,以及使用日本名古屋大學太空地球環境研究所開發的雲解析風暴模式(Cloud-Resolving Storm Simulator, CReSS)3.4.2版進行1公里高解析度模擬進行比較。
    IOP-8 PFSL是在不穩定綜觀環境下,由華東地區的梅雨鋒面所觸發的,個案於6月14日自西向東移向臺灣,形成東北-西南走向的線狀雨帶。SWMCS則於6月16日在臺灣南部海面、沿海地區發展,在南海北部的不穩定環境,有利SWMCS的維持與發展。IOP-3的鋒面對流個案是受到梅雨鋒面南下影響,西南部迎風面山坡在下午發生了局部性強降雨。中層環境暖濕、西南氣流在中央山脈被地形強迫舉升,提供局部強降水發展所需的條件。
    模擬實驗結果顯示,CReSS模式針對三個降水系統的高解析度模擬中,在時間和空間尺度上,均有合理的模擬出降水系統的發展與演變。模式可模擬出PFSL內狹長的回波分佈特徵與其強對流結構,和SWMCS在臺灣西南部陸地以及海域消長的大範圍零散對流胞的發展。另外,可以模擬出小尺度的鋒面對流胞的生命週期與強度,甚至是模擬出對流胞之間的合併過程。
    整體來說,在三個個案中,模式皆有合理的模擬出融解層下方雨水區域與融解層上方的軟雹與雨水混相區域。三個個案所模擬的冰晶區域、雪區域與觀測相比,其分佈位置也屬合理。但也發現到,模式在模擬強對流時,其軟雹區域都比觀測範圍還要更大,整體來說,雖然三個個案模擬中的軟雹區域都較觀測要來的廣,但在對流強度與軟雹發展區域的相關性,則與觀測的特性一致。

    致謝 i 摘要 ii 目錄 iv 表次 vi 圖次 vii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 3 1-4 論文結構 6 第二章 使用資料與方法 7 2-1 資料來源 7 2-2 模式介紹 7 2-3 模式雷達回波反演 10 2-4 模式設定 11 第三章 個案天氣分析與綜觀環境條件 13 3-1 IOP-8 個案 13 3-1-1 天氣分析 13 3-1-2 綜觀環境條件 14 3-2 IOP-3 個案 15 3-2-1 天氣分析 15 3-2-2 綜觀環境條件 16 第四章 觀測與模式結果比較 17 4-1 IOP-8 鋒前颮線的雲微物理特徵與比較 17 4-1-1 鋒前颮線的回波分佈特徵 17 4-1-2 鋒前颮線的回波剖面結構特徵 18 4-1-3 鋒前颮線的水象粒子分佈特徵 19 4-2 IOP-8 中尺度對流系統的雲微物理特徵與比較 20 4-2-1 中尺度對流系統的回波分佈特徵 20 4-2-2 中尺度對流系統的回波剖面結構特徵 21 4-2-3 中尺度對流系統的水象粒子分佈特徵 21 4-3 IOP-3 鋒面對流的雲微物理特徵與比較 22 4-3-1 鋒面對流的回波分佈特徵 22 4-3-2 鋒面對流的回波剖面結構特徵 23 4-3-3 鋒面對流的水象粒子分佈特徵 24 第五章 結論與未來展望 26 5-1 結論 26 5-2 未來展望 28 參考文獻 29 附表 34 附圖 35

    劉妍利,2007:梅雨降水系統的雙偏極化雷達資料分析與WRF模式模擬研究。國立中央大學大氣物理研究所碩士論文,1-93頁。

    許捷勝,2012:臺灣梅雨季強降水系統激發與移行機制之個案模擬研究。國立臺灣師範大學地球科學研究所碩士論文,1-123頁。

    周俊宇,2012:西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較。國立中央大學大氣物理研究所碩士論文,1-103頁。

    曾彥翔,2013:Frontal Convection Analysis Using SPOL Radar during SoWMEX。國防大學理工學院環境資訊及工程學系,大氣科學研究所碩士論文,1-59頁。

    Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual-linear polarization radar. J. Climate Appl. Meteor., 25,1475-1484.

    Aydin, K. V., N. Bringi and L. Liu, 1995: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar parameters., J. of Appl. Meteor., 34, 404-410.

    Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636.

    Cotton, W. R.; Tripoli, Gregory J.; Rauber, Robert M.; Mulvihill, Elizabeth A. 1986: Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall. Journal of Climate and Applied Meteorology, 25(11), 1658–1680.

    Chen, G. T. -J., 2004: World Scientific Series on Asia-Pacific Weather and Climate. East Asian Monsoon, Vol. 2 || RESEARCH ON THE PHENOMENA OF MEIYU DURING THE PAST QUARTER CENTURY: AN OVERVIEW., 10-1142/5482, 357–403.

    Chang, W. -Y., W. -C. Lee, and Y. -C. Liou, 2015:The Kinematic and Microphysical Characteristics and Associated Precipitation Efficiency of Subtropical Convection during SoWMEX/TiMREX. Mon.Wea. Rev., 143, 317-340.

    Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 562.

    Fovell, R. G.; Ogura, Yoshi , 1988: Numerical Simulation of a Midlatitude Squall Line in Two Dimensions. Journal of the Atmospheric Sciences, 45(24), 3846–3879.

    Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132-140.

    Hendry, A., and Y. M. M. Antar, 1984: Precipitation particle identification with centimeter wavelength dual-polarization radar. Radio Sci., 19, 115-122.

    Ikawa, M. and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Technical Report of the MRI, 28, 238pp.

    Jou, B. J.-D., W. C. Lee, and R. H. Johnson, 2011: An overview of SoWMEX/TiMREX. The Global Monsoon System: Research and Forecast,2nded., Edited by C. P. Chang, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 5, 303-318.

    Knupp, K. R.; Cotton, William R. ,1982: An Intense, Quasi-Steady Thunderstorm over Mountainous Terrain. Part II: Doppler Radar Observations of the Storm Morphological Structure. Journal of the Atmospheric Sciences, 39(2), 343–358.

    Karki, R.; Hasson, Shabeh ul; Gerlitz, Lars; Talchabhadel, Rocky; Schenk, Eleonore; Schickhoff, Udo; Scholten, Thomas; Böhner, Jürgen, 2018: WRF-based simulation of an extreme precipitation event over the Central Himalayas: Atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmospheric Research, 214, 21–35.

    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.

    Lopez, R. E., and J. P. Aubagnac, 1997: The lightning activity of a hailstorm as a function of changes in its microphysical characteristics inferred from polarimetric radar observations. J. Geophys. Res., 102, 16799-16813.

    May, P. T., and T. D. Keenan, 2003: Four-dimensional microphysical data from Darwin. 13th ARM Science Team Meeting Proceedings.

    Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud. The 19 July 1981 CCOPE Cloud, J. Meteor. Soc. Japan, 68,107-128.

    Murakami, M., T. L. Clark and W. D. Hall 1994: Numerical simulations of convective snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 43–62.

    Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in mid latitude clouds. Part XII: A diagnostic modeling study of pre- cipitation development in narrow cold frontal rainbands. J. Atmos. Sci., 41, 2949-2972.

    Ruppert, J. H.; Johnson, Richard H.; Rowe, Angela K., 2013: Diurnal Circulations and Rainfall in Taiwan during SoWMEX/TiMREX (2008). Monthly Weather Review, 141(11), 3851–3872.

    Straka, J. M., and D. S. Zrnic, 1993: An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513-515.

    Straka, J. M., D. S. Zrnic, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using multiparameter radar data. Synthesis of relations. J. Appl. Meteor., 39, 1341-1372.

    Straka, J. M., and E. R. Mansell, 2005: A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories. J. Appl. Meteor., 44, 445-466.

    Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using cloud model and its adjoint: Part I. Model developments and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.

    Satoki, T., 2018: Fortran 90 数値解析ライブラリ(STPK) マニュアル (Ver.0.9.19.0). 157-158.

    Tao, W.-K. and J. Simpson, 1989: Modeling study of a tropical squall-type convective line. Journal of the Atmospheric Sciences, 46(2), 177-202.

    Tao, W.-K., J. R. Scale, B. Ferrier, and J. Simpson, 1995: The Effect of Melting Processes on the Development of a Tropical and a Midlatitude Squall Line. J. Atmos. Sci., 52, 1934-1948

    Tsuboki, K., and Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Cpmputing, H.P. Zima et al., Eds., Springer, 243-259.

    Tsuboki, K., and Sakakibara, 2007: Numerical Prediction of High-Impact Weather Systems: The Textbook for the Seventeenth IHP Training Course in 2007. Hydrospheric Atmospheric Research Center, Nagoya University, and UNESCO, 273.

    Tu, C. C., Y. L. Chen, C. S. Chen, P. L. Lin and P. H. Lin, 2014: A comparison of two heavy rainfall events during the Terrain-Influenced Monsoon Rainfall Experiment(TiMREX) 2008. Mon. Wea. Rev., 142, 2436-2463.

    Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnic, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388.

    Wang, Y., 2002: An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model: TCM3. Part II: Model Refinements and Sensitivity to Cloud Microphysics Parameterization. Mon. Wea. Rev., 130(12), 3022–3036.

    Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 2013: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J.Hydrol., 506, 26-41.

    Wang, C. C., Hsu, G. Chen, and D. Lee, 2014a: A study of two propagating heavy-rainfall episodes near Taiwan during SoWMEX/TiMREX IOP-8 in June 2008. Part I: Synoptic evolution, episode propagation, and model control simulation. Mon. Wea. Rev., 142, 2619–2643.

    Wang, C. C., Hsu, G. Chen, and D. Lee, 2014b: A study of two propagating heavy-rainfall episodes near Taiwan during SoWMEX/ TiMREX IOP-8 in June 2008. Part II: Sensitivity tests on the roles of synoptic conditions and topographic effects. Mon. Wea. Rev., 142, 2644–2664.

    Wang, C.-C., Li, M.-S., Chang, C.-S., Chuang, P.-Y., Chen, S.-H., & Tsuboki, K. (2021): Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-yu season: The 2 June 2017 case. Atmospheric Research, 259, 105684.

    Xu, W., Zipser, Edward J.; Chen, Yi-Leng; Liu, Chuntao; Liou, Yu-Chieng; Lee, Wen-Chau; Jong-Dao Jou, Ben 2012: An Orography-Associated Extreme Rainfall Event during TiMREX: Initiation, Storm Evolution, and Maintenance. Mon. Wea. Rev., 140(8), 2555–2574.

    Yoshizaki, Masanori 1986: Numerical Simulations of Tropical Squall-line Clusters: Two-dimensional Model. Journal of the Meteorological Society of Japan. Ser. II, 64(4), 469–491.

    Zrnic, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin,and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678-693.

    Zrnic, D. S.; Ryzhkov, Alexander V. 1999: Polarimetry for Weather Surveillance Radars. Bulletin of the American Meteorological Society, 80(3), 389–406.

    Zima, H. P., Joe, Kazuki; Sato, Mitsuhisa; Seo, Yoshiki; Shimasaki, Masaaki 2002:[Lecture Notes in Computer Science] High Performance Computing Volume 2327 || Large-Scale Parallel Computing of Cloud Resolving Storm Simulator., Chapter 21, 243–259.

    Zhu, T. and Da-Lin Zhang, 2006: Numerical Simulation of Hurricane Bonnie(1998). Part II: Sensitivity to Varying Cloud Microphysical Processes. J. Atmos. Sci., 63, 109-126.

    下載圖示
    QR CODE