研究生: |
蔡仲元 TSAI, Jung-Yuan |
---|---|
論文名稱: |
中國湖北地區晚古生代腕足動物化石殼體之穩定碳氧同位素紀錄與古環境 Late Paleozoic Environment Inferred from Stable Carbon and Oxygen Isotope Records of Brachiopod Shells from Hubei, China |
指導教授: | 米泓生 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 晚古生代 、穩定碳氧同位素 、腕足動物 、中國湖北省 |
英文關鍵詞: | Paleozoic, stable carbon and oxygen isotope, brachiopods, Hubei |
論文種類: | 學術論文 |
相關次數: | 點閱:126 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採集114個來自中國湖北省晚石炭紀及晚二疊紀的腕足動物化石,分析其穩定碳氧同位素組成,以重建華南地區晚古生代的環境特徵。
化石標本經過整理及拍照後,灌膠固定並製作成岩石薄片。再使用透射光顯微鏡觀察其殼體微細構造,並以陰極射線顯微鏡觀察,判斷化石殼體是否經成岩作用影響。結果顯示部分腕足動物殼體及圍岩在陰極射線下會呈現發藍光或是微弱藍光的現象,再經分析其REEs(Rare Earth Elements)組成,推論可能經過熱液作用,致使其發出藍光。
本研究共分析321個樣品的碳氧同位素成份,保存最好(不發光)的腕足殼體的δ13C及δ18O平均值分別為5.0±2.0‰、-4.5±0.7‰ (N=63),而在陰極射線下顯示受成岩作用影響(發光)的腕足動物殼體與圍岩的δ18O平均值分別為-6.6±1.4‰ (N=26)與-6.4±1.1‰ (N=30)。由於不發光部位之氧同位素數值顯著大於發光部份之氧同位素數值,可見屬於不發光部份的腕足動物殼體並未受到成岩作用影響,應可用於探討古環境。
除了Kungurian期的碳同位素較輕外(δ13C = 1.7±0.3‰),其餘的碳同位素紀錄皆偏重(2.9~7.5‰),顯示華南地區應有較高的生產力。晚石炭紀的氧同位素紀錄為-4.4±0.3‰ (N=6),而二疊紀Kungurian期的δ18O值為-4.5±0.2‰ (N=4)、Roadian至Capitanian期為-4.2±0.5‰ (N=40)、Wuchiapingian期為-4.2±0.6‰ (N=2)、Changsingian期為-4.6±0.1‰ (N=11);若假設二疊紀當時海水的氧同位素數值為-1‰ (全球無大陸冰川狀態),計算出的表層海水氧同位素溫度為32.5±0.6°C,反映出華南地區位於熱帶地區海水溫度高的特性。而Kungurian至Capitanian期的氧同位素數值比同時期烏拉爾(Ural)的標本還要來的小,顯示溫度較高,符合古地理所重建之當時華南陸塊位於古赤道地區熱帶氣候的特性。而華南地區的氧同位素數值比同時期低緯度地區的美國中部(Guadalupe)地區的氧同位素數值輕,反映出美國中部地區為蒸發效應強烈的乾燥環境,但華南陸塊當時位於開放性大洋,而有高溫多雨的氣候環境。
本研究所紀錄的晚二疊紀華南地區海水溫度較高,且有類似現今西太平洋暖池的現象。從腕足殼體沿著生長方向的氧同位素數值變化來看,Roadian至Capitanian期的氧同位素溫度之最高溫及最低溫相差約攝氏4.6~6.1度,至Changsingian期則只相差攝氏了0.9度,反映了當時隨著全球溫度上升,季節性溫差變得較小的特性。
One hundred and fourteen brachiopod shells collected from Hubei,China were analyzed for the stable carbon and oxygen isotope records to infer the tropicalpaleoenvironment for Late Paleozoic. All samples were made into thin sections and were examined for shell preservation under the petrographic and cathodoluminescence(CL) microscopes. Two samples were selected to analyze REEs contents for further evaluation of shell preservation due to the blue light observed under CL. The REEs results show that the blue light might be related to hydrothermal
diagenesis. Three hundred and twenty-one isotopic analyses were performed.Average stable carbon and oxygen isotope of nonluminescent shells(N=63) are 5.0±2.0‰ and -4.5±0.7‰, respectively. Mean δ18O value is-6.6±1.4‰ (N=26) for luminescent shells and is -6.4±1.1‰ (N=30) for luminescent matrix. Therefore, average nonluminescent shell δ18O value
is greater than those of luminescent shells and matrix indicating that the nonluminescent shells were not altered by diagenesis.
IV Except for Kungurian (δ13C = 1.7±0.3‰), carbon isotope values of South China are between 2.9 and 7.5‰, greater than those of contemporary records from other regions. More positive values in carbon isotope records may indicate higher productivity in South China during Late Permian.
Average oxygen isotope values are -4.4±0.3 ‰ (N=6) for late
Carboniferous, -4.5±0.2‰ (N=4) for Kungurian, -4.2±0.5‰ (N=40) for Roadian to Capitanian , -4.2±0.5‰ (N=2) for Wuchiapingian, and -4.6±0.1‰ (N=11) for Changhsingian. Average oxygen isotope values are less than those of mid-continent and Ural in Permian. Assuming the seawater oxygen isotope was -1‰, the calculated average sea surface
temperature was 32.5±0.6°C for Late Permian. This warm sea surface
temperature of South China indicating that modern Western Pacific Warm Pool sea surface temperature pattern was also existed in Late Permian. Based on the oxygen isotope record within in single shells, seasonal temperature fluctuations in South China were significant (4.6~6.1°C) for Roadian to Capitanian but insignificant (0.9°C) in South China for Changhsingian.
王鈺, 金玉玕, and 方大衛, 1966, 腕足動物化石: 北京, 科學出版社, 693 p.
杜正恭, 王凱正, and 蔡淑月, 2009, 電子微探儀 Electron Probe Microanalyzer, 科儀新知, Volume 30, p. 69-76.
林良彪, 陳洪德, and 朱利東, 2010, 川東茅口組硅質岩地球化學特徵及成因: 地質學報, v. 84, p. 500-507.
湖北省地質礦產局, 1990, 湖北省區域地質誌: 武漢, 地質出版社, 705 p.
黃宏勝, and 林麗娟, 2003, FE-SEM/CL/EBSD分析技術簡介, 工業材料雜誌, Volume 203, p. 99-108.
萬秋, and 李双應, 2011, 中揚子地區中二疊統沉積及古地理特徵: 地質學報, v. 85, p. 993-1007.
鄭智仁. (2011). 二疊紀高緯度地區的古環境—澳洲雪梨盆地與塔斯曼島腕足動物化石穩定碳氧同位素紀錄. 國立臺灣師範大學地球科學系碩士論文. 共103頁.
劉喜停, 馬志鑫, and 顏佳新, 2010, 揚子地區晚二疊世吳家坪期沉積環境及烃源岩發育的控制因素: 古地理學報, v. 12, p. 244-252.
顏佳新, 2004, 華南地區二疊紀棲霞組碳酸鹽成因研究及其地質意義: 沉積學報, v. 22, p. 579-587.
羅進雄, 何幼斌, 王丹, 周新平, 田雨, 劉娜, and 李華, 2009, 湖北興山大峽口剖面二疊系岩石特徵及沉積環境分析: 古地理學報, v. 11, p. 393-404.
Anderson, T.F., and Arthur, M.A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur: Stable isotopes in sedimentary geology, v. 10, p. 1-151.
Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M.H., and Zanchi, A., 2007, Tethyan oceanic currents and climate gradients 300 m.y. ago.: Geology, p. 1071-1074.
Angiolini, L., Jadoul, F., Leng, M.J., Stephenson, M.H., Rushton, J., Chenery, S., and Crippa, G., 2009, How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells: Journal of the Geological Society, p. 933-945.
Attendorn, H.G., and Bowen, R.N.C., 1997, Radioactive and Stable Isotope Geology: London, Chapman & Hall, 522 p.
Auclair, A.-C., Joachimski, M.M., and Lecuyer, C., 2003, Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of terebatalia transversa(Brachiopoda): Chemical Geology, p. 59-78.
Barbin , V., Ramseyer, K., Debenay, J.P., Schein, E., Roux, M., and Decrouez, D., 1991, Cathodoluminescence of recent biogenic carbonates: an environmental and ontogentic fingerprint.: Geological Magazine, v. 128, p. 19-26.
Baud, A., Magaritz, M., and Holser, W.T., 1989, Permian-Triassic of the Tethys:Carbon isotope studies: Geogische Rundschau, v. 78, p. 649-677.
Brand, U., 1989, Biogeochemistry of late Paleozoic north American brachiopods and secular variation of seawater composition: Biochemistry, v. 7, p. 159-193.
Brand, U., 1989, Global climate changes during the Devonian-Mississippian: Stable isotope biogeochemistry of brachiopods: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 75, p. 311-329.
Brand, U., Logan, A., Hiller, N., and Richardson, J., 2003, Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography: Chemical Geology, v. 198, p. 305-334.
Brand, U., Tazawa, J.I., Sano, H., Azmy, K., and Lee, X.Q., 2009, Is mid-late Paleozoic ocean-water chemistry coupled with epeiric seawater isotope records?: Geology, v. 37, p. 823-826.
Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multi-component carbonate system-1.: Trace elements J. Sediment. Petrol, v. 50, p. 1219-1237.
Bruckschen, P., Oesmann, S., and Veizer, J., 1999, Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics: Chemical Geology, v. 161, p. 127-163.
Bruckschen, P., and Veizer, J., 1997, Oxygen and carbon isotopic composition of Dinantian brachiopods: Paleoenvironmental implications for the Lower Carboniferous of western Europe: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 132, p. 243-264.
Buggisch, W., Wang, X., Alekseev, A.S., and Joachimski, M.M., 2011, Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze Platform), USA (Kansas) and Russia (Moscow Basin and Urals): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 301, p. 18-38.
Clarkson, E.N.K., 1986, Invertebrate Paleontology and Evolution.: London.
Compston, W., 1960, The carbon isotope compositions of certain marine invertebrates and coals from the Australian Permian: Cosmochim, v. 18, p. 1-22.
Craig, H., and Gordon, L.I., 1965, Isotopic oceanography;deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in Symposium on marine geochemistry, 1964: Occasional Pubblication Narragansett Marine Laboratory, University of Rhode Island, p. 277-234.
Crowell, J.C., 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change: American Journal of Science, v. 278, p. 1345-1372.
Curry, G.B., and Fallick, A.E., 2002, Use of stable oxygen isotope determinations from brachiopod shells in palaeoenvironmental reconstruction: Palaeogeography, Palaeoclimatology, Palaeoecology v. 182, p. 133-143.
Dickins, J.M., 1996, Problem of a late Palaeozoic glaciation in Australia and sunsequent climate in the Permian: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125, p. 185-197.
Eickmann, B., Bach, W., Rosner, M., and Peckmann, J., 2009, Geochemical constraints on the modes of carbonate precipitation in peridotites from the Logatchev Hydrothermal Vent Field and Gakkel Ridge: Chemical Geology, v. 268, p. 97-106.
Epstein, S., and Mayeda, T., 1953, Variation of 18O content of water from natural sources: Geochimica et Cosmochimica Acta, v. 4, p. 213-224.
Fairchild, I.J., 1983, Chemical controls of cathodoluminescence of natural dolomites and calcites: new data and review: Sedimentology, v. 30, p. 579-583.
Fielding, C., R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T., and Roberts, J., 2008, Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: a record of alternating glacial and nonglacial climate regime: Journal of the Geological Society, London, v. 165.
Friedli, H., Loetscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B., 1986, Ice core record of the 13C/12C ratio of atmospheric CO2 in the past tow centuries: Nature, v. 324.
Gibbs, M.T., Ree, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and Rowley, D.B., 2002, Simulations of Permian climate and comparisons with climate-sensitive sediments: The Journal of Geology, v. 110, p. 33-55.
Gromet, L.P., Dymek, R.F., Haskin, R.A., and Korotev, R.L., 1984, The "North American shale composite": its complication, major and trace element characteristics.: Geochimet Cosmochim Acta v. 48, p. 2469-3482.
Grossman, E.L., Mii, H.S., and Yancey, T.E., 1993, Stable isotopes in Late Pennsylvanian brachiopods from the United States; implications for Carboniferous paleoceanography: Geological Society of America Bulletin, v. 105, p. 1284-1296.
Grossman, E.L., Mii, H.S., Zhang, C., and Yancey, T., 1996, Chemical variation in Pennsylvanian brachiopod shells- diagenetic, taxonomic, microstructural, and seasonal effects.: Journal of Sedimentary Research, v. 66, p. 1011-1022.
Grossman, E.L., Yancey, T., Jones, T., Bruckschen, P., Chuvashov, B., Mazzullo, S., and Mii, H., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 222-233.
Grossman, E.L., Zhang, C., and Yancey, T.E., 1991, Stable-isotope stratigraphy of brachiopods from Pennsilvanian Shales in Texas.: Geological Society of America Bulletin, v. 103, p. 13.
Guggino, S.N., 2004, Seasonality in western equatorial Pangaea during the Early Permian(Uppper Sakmarian): δ18O,δ13C, and elemental analysis of brachiopod shells from the Robledo Mountains, New Mexico, USA.: A Master thesis submitted in partial fulfillment of the requirements for the degree of Geology College of Arts and Sciences University of South Florida.
Habermann, D., Neuser, R.D., and Richter, D.K., 1996, Ree-activated cathodoluminescence of calcite and dolomite:High Resolution Spectrometric analysis of CL emission (HRS-CL): Sediment.Geol., v. 101, p. 1-7.
Hays, P.D., and Grossman, E.L., 1991, Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate: Geology, v. 19, p. 441-444.
Holser, W.T., Scho¨ nlaub, H.-P., Attrep, M., Boeckelmann, K., Klein, P., Magaritz, M., Orth, C.J., Fenninger, A., Jenny, C., Kralik, M., Mauritsch, H., Pak, E., Schramm, J.-M., StatteggerK., and Schmo¨ ller, R., 1989, A unique geochemical record at the Permian/Triassic boundary.: Nature, v. 337, p. 39-44.
Hughes, M.K., Schweingruber, F.H., Cartwright, D., and Kelly, P.M., 1984, July/August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data: Nature, v. 308, p. 341-344.
Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003, Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of northern hemisphere cyclothems?: Geological Society of America Special Papers, v. 370, p. 5-24.
Kametaka, M., Takebe, M., Nagai, H., Zhu, S., and Takayanagi, Y., 2005, Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze Platform, China; the Gufeng Formation: a continental shelf radiolarian chert: Sedimentary Geology, v. 174, p. 197-222.
Kiehl, J.T., and Shields, C.A., 2005, Climate simulation of the latest Permian: Implications for mass extinction: Geology, v. 33, p. 757-760.
Korte, C., Jones, P., Brand, U., Mertmann, D., and Veizer, J., 2008, Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 269, p. 1-16.
Korte, C., Kozur, H.W., and Veizer, J., 2005, δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 226, p. 287-306.
Kutzbach, J.E., and Ziegler, A.M., 1993, Simulation of Late Permian climate and biomes with an atmosphere/ocean model: Comparisons with observations. Royal Society of London Philosophical Transactions: Ser. B, v. 341.
Lee, X.Q., and Wang, G.J., 2000, No vital effect on 18O and 13C values of fossil brachiopod shells, Middle Devonian of China: Geochimica et Cosmochimica Acta, v. 15, p. 2649-2664.
Li, B.H., Jian, Z.M., and Wang, P.X., 1997, Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years: Marine Micropaleontology, v. 32, p. 59-69.
Lowenstam, H.A., 1961, Mineralogy, 18O/16O ratios, and strontium and magnesium contents of yhe oceans: J.Geol, v. 69, p. 241-260.
Machel, H.G., Mason, R.A., Mariano, A.N., and Mucci, A., 1991, Causes and emission of luminescence in calcite and dolomite. In Barker, C.E., Kopp, O.C (Eds.), Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, v. SEPM Short Course 25, p. 9-25.
Maier, C., Felis, T., Pätzold, J., and Bak, R.P.M., 2004, Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites: Marine Geology, v. 207, p. 193-208.
Manabe, S., and Broccoli, A.J., 1985, The influence of continental ice sheet on the climate of an ice age: Journal of Geophysical research, v. 90, p. 161-190.
Martin, J.R., Redfern, J., and Aitken, J.F., 2008, Tracy, D.F., Isbell, J.L. (Eds.), Resolving the Late Paleozoic ice age in time and space: Geol. Soc. Amer. Spec. Paper, v. 441, p. 175-186.
McDermotta, F., Atkinsonb, T.C., Fairchildc, I.J., Baldinid, L.M., and Matteye, D.P., 2011, A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems: Global and Planetary Change, v. 79, p. 275-287.
Mii, H.G., Grossman, E.L., and Yancey, T.E., 1997, Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen—Global change or diagenetic artifact?: Geology, v. 25, p. 227-230.
Mii, H.S., and Grossman, E.L., 1994, Late Pennsylvanian seasonality reflected in the 18O and elemental composition of a brachopod shell: Geology, v. 22, p. 661-664.
Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: Geological Society of America Bulletin, v. 111, p. 960-973.
Mii, H.S., Shi, G.R., Cheng, C.J., and Chen, Y.U., 2012, Permian Gondwanaland paleoenvironment inferred from carbon and oxygen isotope records of brachiopod fossils from Sydney Basin, southeast Australia: Chemical Geology, v. 291, p. 87-103.
Morse, J.W., and mackenzie, F.T., 1990, Geochemistry of Sedimentary Carbonates: Amsterdam: Elsevier, p. 707p.
Muehlenbachs, K., and Clayton, R.N., 1976, Oxygen isotopes composition of the oceanic crust and its bearing on seawater: Journal of Geophysical Research, v. 81, p. 4356-4369.
Parkinson, D., Curry, G.B., Cusack, M., and Fallick, A.E., 2005, Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells: Chemical Geology, v. 219, p. 193-235.
Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones: Geological Society of America Bulletin, v. 97, p. 1262-1269.
Porter, S.C., and An, Z., 1955, Correlation between climate events in the North Atlantic and China during the last glaciation: Nature, v. 375, p. 305-308.
Ree, P.M., Gibbs, M.T., Ziegler, A.M., Kutzbach, J.E., and Behling, P.J., 1999, Permain climates: evaluating model predictions using global paleobotanical data: Geology, v. 27, p. 891-894.
Ree, P.M., Ziegler, A.M., Gibbs, M.T., Kutzbach, J.E., Behling, P.J., and Rowley, D.B., 2002, Permian phytogeographic patterns and climate data/model comparisons: J.Geol, v. 110, p. 1-31.
Ruddiman, W.F., 2000, Earth's climate - past and future: New York, W. H. Freeman and company, 441 p.
Rush, P.F., and Chafetz, H.S., 1990, Fabric-retentive, non-luminescent brachiopods as indicators of original 13C and 18O composition: a test: Journal of Sedimentary Petrology, v. 60, p. 968-981.
Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L.M., and Seifert, R., 2007, Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev Hydrothermal Field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation.: Chemical Geology, v. 242, p. 1-21.
Scotese, C.R., Boucot, A.J., and Mckerrow, W.S., 1999, Gondwanan palaeogeography and palaeoclimatology: Journal of African Earth Sciences, v. 28, p. 99-114.
Shackleton, N.J., 1967, Oxygen isotope analyses and Pleistocene temperatures: Re-assessed: Nature, v. 215, p. 15-17.
Shackleton, N.J., and Opdyke, N.D., 1973, Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperaure and ice volumes on a 105 year and 106 year scale: Quaternary Research, v. 3, p. 39-55.
Singh, G., and Luly, J., 1991, Changes in vegetation and seasonal climate since the last full glacial at Lake Frome, South Australia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 84, p. 75-79.
Spero, H.J., Mielke, K.M., Kalve, E.M., Lra, D.W., and Pak, D.K., 2003, Multisoecies approach to reconstructing eastern equatorial Pacific thermocline hydrography guring the past 360 kyr: Paleoceanography, v. 18, p. 1022.
Tabor, N.J., and Poulsen, C.J., 2008, Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 293-310.
Urey, H.C., Lowenstam, H.A., Epstein, S., and McKinney, C.R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States: Geological Society of America Bulletin, v. 62, p. 399-416.
Veevers, J.J., and Powell, M., 1987, Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica: Geological Society of America Bulletin, v. 98, p. 475-487.
Veizer, J., 1983, Chemical diagenesis of carbonates: theory and application of trace element technique. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (Eds.), Stable Isotopes in Sedimentary Geology, Society of Economic Palaeontologists and Mineralogists Short Course, vol. 10, pp. 3/1 –3/100. Tulsa.
Veizer, J., 1999, 87Sr/86Sr, 13C and 18O evolution of Phanerozoic seawater: Chem. Geol, v. 161, p. 59-88.
Veizer, J., Fritz, P., and Jones, B., 1986, Geochemistry og brachiopods: oxygen and carbon isotope trcords of Paleozoic oceans: Geochim, v. Acta 50, p. 1679-1696.
Wang, Q.X., Tong, J.N., Song, H.J., and Yang, H., 2009, Ecological evolution across the Permian/Triassic boundary at the Kangjiaping Section in Cili County, Hunan Province, China: Science in China Series D: Earth Sciences v. 52, p. 797-806.
Wang, X.D., Shen, S.Z., Sugiyama, T., and West, R.R., 2003, Late Palaeozoic of Tibet (Xizang) and west Yunnan, southwest China: successions and palaeobiogeography: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 191, p. 385-397.
Williams, P.W., Marshall, A., Ford, D.C., and Jenkinson, A.V., 1999, Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand: The Holocene, v. 9, p. 649-657.
Winguth, A.M.E., Heinze, C., Kutzbach, J.E., Maier-Reimer, E., Mikolajewicz, U., Rowley, D.B., Rees, A., and Ziegler, A.M., 2002, Simulated warm polar currents during the middle Permian: Paleoceanography, v. 17, p. 1057.
Zhou, X.P., He, Y.B., Du, H.Q., and Li, H., 2009, Geochemical characteristics and origin of the Permian siliceous rocks in Xuanhan region of Sichuan Province: Journal of palaeogeography, v. 11, p. 670-680.
Zuo, J.G., Tong, J.N., Qiu, H.I., and Zhao, L.S., 2005, Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China: Science in China Series D: Earth Sciences, v. 49, p. 225-241.
https://engineering.purdue.edu /Stratigraphy/index.html for International stratigraphic chart 2010.
http://www.scotese.com/ for paleomap.
http://jan.ucc.nau.edu/~rcb7
http://www.noaa.gov/ The National Oceanic and Atmospheric Administration (NOAA).