簡易檢索 / 詳目顯示

研究生: 黃鈺涵
論文名稱: 中鏈脂肪酸對痤瘡桿菌誘導發炎反應之影響
Effects of medium chain fatty acid on arachidonic acid and Propionibacterium acnes-induced inflammation
指導教授: 蔡帛蓉
Tsai, Po-Jung
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 痤瘡痤瘡桿菌中鏈脂肪酸發炎
英文關鍵詞: acne, P. acnes, medium chain fatty acid, inflammation
論文種類: 學術論文
相關次數: 點閱:147下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尋常性痤瘡(acne vulgaris)又稱青春痘,除了好發於青春期男女外,在成年人也常見。其致病因子複雜,包括過多皮脂分泌(sebaceous hyperproductiom)、毛囊過度角化(follicular hyperkeratinization)、氧化壓力、發炎反應(periglandular dermal inflammation)和男性賀爾蒙都可能造成尋常性痤瘡的發生。痤瘡發展過程中痤瘡桿菌(P. acnes)被認為扮演重要的角色,P. acnes在阻塞的皮脂腺內大量繁殖會吸引單核球細胞(monocytes),而藉由活化單核球細胞與角質細胞的toll-like receptor,啟動其下游的訊息傳遞路徑使發炎介質產生而誘導痤瘡發炎;另外P. acnes誘發產生活性氧分子(ROS)也參與發炎反應。中鏈脂肪酸包括caproic acid (C6:0), caprylic acid (C8:0), capric acid (C10:0)和lauric acid (C12:0)。
    本研究目的為:以THP-1細胞以及皮脂腺細胞SZ95,探討中鏈脂肪酸對於痤瘡桿菌誘導發炎反應的影響。capric acid於本實驗室先前的研究結果顯示可降低in vitro實驗中以P. acnes誘導THP-1 monocytes產生的促發炎激素IL-8, TNF-aIL-1B,而將P. acnes與capric acid注射進ICR小鼠耳朵的in vivo實驗結果顯示可以減少小鼠耳朵因P. acnes.造成的腫脹與重量。
    以broth dilution method實驗的結果發現capric acid在高濃度時能抑制痤瘡桿菌生長;三種中鏈脂肪酸皆能夠減少P. acnes刺激THP-1 monocytes所產生的促發炎細胞激素TNF-a, IL-8,IL-1蛋白質和mR。
    capric acid IC50為22.9 M,以capric acid作為後續機制探討的樣品,結果顯示capric acid在25, 50, 100 M,皆可以顯著降低p38, ERK, JNK, p65蛋白質磷酸化的表現;於in vivo抗發炎實驗中顯示,三種中鏈脂肪酸能夠抑制P. acnes誘發的發炎反應與耳朵腫脹現象。
    另外,花生四烯酸(AA)會使P. acnes誘使THP-1產生的IL-8增加,且也同時增加皮脂腺脂質的堆積。capric acid則會降低單獨P.acnes和AA+P.acnes產生的IL-8;另外SZ95預處理AA後,AA+P.acnes組產生的IL-8高於單獨 AA 組別;capric acid會降低單獨P.acnes和AA+P.acnes產生的IL-8。

    Acne vulgaris is a common skin disease involving pilosebaceous follicle. The pathogenesis of acne vulgaris is multifactorial, including increased sebum production, comedogenesis and Propionibacterium acnes proliferation. P. acnes plays an important role not only in the process of inflammation but also in the formation of comedones. Previous studies have shown that P. acnes is one of the most important factors in acne. P. acnes activate toll-like receptor-2 on monocytes, which triggers the release of proinflammatory mediators(TNF-, IL-8), some studies have found that reactive oxygen species (ROS) will participate in the progression of acne. Medium chain fatty acid(MCFA)including caproic acid (C6:0), caprylic acid (C8:0), capric acid (C10:0)和lauric acid (C12:0).
    We investigated the effect of MCFA on inflammation caused by P. acnes.Human monocytes THP-1 cells and SZ95 were treated with P. acnes alone or in the presence of MCFA.Our previous studies have shown capric acid, lauric acid reduced P. acnes would activate monocytes to secrete pro-inflammatory cytokines.In addition, capric acid, lauric acid reduced P. acnes-induced inflammation of mice ear and then showed in vivo anti-inflammatory activity.
    Our results showed capric acid effectively inhibited the growth of P. acnes. Capric acid, caprylic acid and caproic acid potently suppressed the production of pro-inflammatory cytokines such as tumor necrosis factor-, interleukin (IL)-8, and IL-1B by human monocytes THP-1 cells stimulated with P. acnes.
    The IC50 of capric acid was 22.9 M, we further evaluated the anti-inflammatory mechanism of capric acid, the results showed that significantly inhibited P. acnes-enhanced phosphorylation of p38, ERK, JNK and p65.MCFA reduced P. acnes-induced inflammation of mice ear and showed in vivo anti-inflammatory activity.
      Arachidonic acid(AA) significantly enhanced IL-8 by P. acnes-stimulated THP-1 cells, and AA stimulated lipogenesis of SZ95 sebocyte. Capric acid reduced P. acnes-induced and AA+ P. acnes-induced IL-8 expression.In addition, pretreatment with AA stimulated enhanced IL-8 by P. acnes- stimulated SZ95 sebocyte, Capric acid reduced P. acnes-induced and AA+ P. acnes-induced IL-8 expression.

    第一章 緒論 1 一、研究動機 1 二、研究目的 2 第二章 文獻探討 3 第一節 皮膚結構 3 第二節 痤瘡的致病機制 6 壹、痤瘡的成因 6 貳、痤瘡桿菌與發炎反應 10 一、 Toll-like receptors (TLRs) 11 二、 痤瘡桿菌誘導之促發炎細胞激素 13 三、 Arachidonic acid signaling pathway 13 第三節 痤瘡的治療 16 第四節 實驗材料 17 一、 脂肪酸 17 第三章 材料與方法 19 第一節 研究材料 19 一、 實驗架構 19 二、 藥品與試劑 20 三、 儀器設備與耗材 24 四、 細胞培養 25 五、 細菌培養 27 第二節 實驗方法 28 一、 抑菌實驗 28 二、 細胞存活率測定 (MTT) 28 三、 抗發炎活性評估 29 四、 促發炎細胞激素mRNA表現量 30 五、 中鏈脂肪酸對於P. acnes-induced p-38, ERK, JNK磷酸化之影響 33 六、 轉錄因子nuclear factor-kappa B (NF-κB)活化分析 35 七、 動物實驗 (in vivo抗發炎能力評估) 36 八、 統計分析 40 第四章 結果 41 第一節中鏈脂肪酸之抑菌與抗發炎作用 41 壹、 抑菌實驗 41 貳、 細胞存活率測定(MTT) 43 第二節 評估中鏈脂肪酸的抗發炎能力 44 壹、In vitro抗發炎活性評估 44 貳、In vivo anti-inflammatory effect 53 參、中鏈脂肪酸對於P. acnes-induced MAPK pathway and NF-B磷酸化之影響 55 第三節capric acid對pretreated AA刺激P. acnes- induced IL-8之影響 61 第四節 脂質堆積 66 壹、細胞存活率測定(MTT) 66 貳、中鏈脂肪酸之SZ95脂質堆積的影響 67 參、AA之脂質堆積的影響 68 第五章 討論 69 一、抗發炎活性與作用機制 69 二、 In vivo抗發炎活性評估 79 三、 總結 81 第六章 參考文獻 82 第七章 附錄(動物實驗同意書) 89

    連聰蓉。(2010)。探討香料萃取物抑制痤瘡桿菌生長與抗發炎之作用與機轉。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文,未出版,台北市。
    呂孟凡。(2011)。山苦瓜萃物對人類角質細胞及皮脂腺細胞之增生與分化的影響。國立臺灣大學生命科學院生化科技研究所碩士論文,未出版,台北市。
    黃育亭。(2011)。山苦瓜萃取物抑制黑色素生成及抗光老化效應的評估。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文,未出版,台北市。
    李宥苡。(2012)。山苦瓜萃取物暨其區分物對於痤瘡桿菌誘導發炎反應的影響。國立臺灣師範大學人類發展與家庭學系營養科學與教育組碩士論文,未出版,台北市。
    Alestas, T., Ganceviciene, R., Fimmel, S., Muller-Decker, K., & Zouboulis, C. C. (2006). Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med (Berl), 84(1), 75-87.
    Bagga, D., Wang, L., Farias-Eisner, R., Glaspy, J. A., & Reddy, S. T. (2003). Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci U S A, 100(4), 1751-1756.
    Bojar, R. A., & Holland, K. T. (2004). Acne and Propionibacterium acnes. Clin Dermatol, 22(5), 375-379.
    Coenye, T., Peeters, E., & Nelis, H. J. (2007). Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Research in Microbiology, 158(4), 386-392.
    Dessinioti, C., & Katsambas, A. D. (2010). The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol, 28(1), 2-7.
    Espersen, F. (1998). Resistance to antibiotics used in dermatological practice. Br J Dermatol, 139 Suppl 53, 4-8.
    Farrar, M. D., & Ingham, E. (2004). Acne: inflammation. Clin Dermatol, 22(5), 380-384.
    Friedlander, S. F., Eichenfield, L. F., Fowler, J. F., Jr., Fried, R. G., Levy, M. L., & Webster, G. F. (2010). Acne epidemiology and pathophysiology. Semin Cutan Med Surg, 29(2 Suppl 1), 2-4.
    Fuchs, E., & Raghavan, S. (2002). Getting under the skin of epidermal morphogenesis. Nat Rev Genet, 3(3), 199-209.
    Gaudreault, E., & Gosselin, J. (2009). Leukotriene B4 potentiates CpG signaling for enhanced cytokine secretion by human leukocytes. J Immunol, 183(4), 2650-2658.
    Ghodsi, S. Z., Orawa, H., & Zouboulis, C. C. (2009). Prevalence, severity, and severity risk factors of acne in high school pupils: a community-based study. Journal of Investigative Dermatology, 129(9), 2136-2141.
    Gollnick, H. (2003). Current concepts of the pathogenesis of acne - Implications for drug treatment. Drugs, 63(15), 1579-1596.
    Graham, G. M., Farrar, M. D., Cruse-Sawyer, J. E., Holland, K. T., & Ingham, E. (2004). Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL. Br J Dermatol, 150(3), 421-428.
    Grange, P. A., Raingeaud, J., Calvez, V., & Dupin, N. (2009). Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways. J Dermatol Sci, 56(2), 106-112.
    Grange, P. A., Weill, B., Dupin, N., & Batteux, F. (2010). Does inflammatory acne result from imbalance in the keratinocyte innate immune response? Microbes Infect, 12(14-15), 1085-1090.
    Hazra, S., Batra, R. K., Tai, H. H., Sharma, S., Cui, X., & Dubinett, S. M. (2007). Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Mol Pharmacol, 71(6), 1715-1720.
    Hoeffler, U. (1977). Enzymatic and hemolytic properties of Propionibacterium acnes and related bacteria. J Clin Microbiol, 6(6), 555-558.
    Hubert-Buron, A., Leblond, J., Jacquot, A., Ducrotte, P., Dechelotte, P., & Coeffier, M. (2006). Glutamine pretreatment reduces IL-8 production in human intestinal epithelial cells by limiting IkappaBalpha ubiquitination. J Nutr, 136(6), 1461-1465.
    Isard, O., Knol, A. C., Aries, M. F., Nguyen, J. M., Khammari, A., Castex-Rizzi, N., et al. (2011). Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation. Journal of Investigative Dermatology, 131(1), 59-66.
    Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol, 5(10), 987-995.
    Jalian, H. R., Liu, P. T., Kanchanapoomi, M., Phan, J. N., Legaspi, A. J., & Kim, J. (2008). All-trans retinoic acid shifts Propionibacterium acnes-induced matrix degradation expression profile toward matrix preservation in human monocytes. Journal of Investigative Dermatology, 128(12), 2777-2782.
    Jarrousse, V., Castex-Rizzi, N., Khammari, A., Charveron, M., & Dreno, B. (2007a). Modulation of integrins and filaggrin expression by Propionibacterium acnes extracts on keratinocytes. Archives of Dermatological Research, 299(9), 441-447.
    Jarrousse, V., Castex-Rizzi, N., Khammari, A., Charveron, M., & Dreno, B. (2007b). Zinc salts inhibit in vitro Toll-like receptor 2 surface expression by keratinocytes. Eur J Dermatol, 17(6), 492-496.
    Jeremy, A. H., Holland, D. B., Roberts, S. G., Thomson, K. F., & Cunliffe, W. J. (2003). Inflammatory events are involved in acne lesion initiation. Journal of Investigative Dermatology, 121(1), 20-27.
    Jugeau, S., Tenaud, I., Knol, A. C., Jarrousse, V., Quereux, G., Khammari, A., et al. (2005). Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol, 153(6), 1105-1113.
    Keeney, D. S., Skinner, C., Travers, J. B., Capdevila, J. H., Nanney, L. B., King, L. E., et al. (1998). Differentiating keratinocytes express a novel cytochrome P450 enzyme, CYP2B19, having arachidonate monooxygenase activity. Journal of Biological Chemistry, 273(48), 32071-32079.
    Kim, J. (2005a). Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology, 211(3), 193-198.
    Kim, J. (2005b). Review of the innate immune response in acne vulgaris: Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology, 211(3), 193-198.
    Kim, J., Ochoa, M. T., Krutzik, S. R., Takeuchi, O., Uematsu, S., Legaspi, A. J., et al. (2002). Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol, 169(3), 1535-1541.
    Kupper, T. S., & Fuhlbrigge, R. C. (2004). Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol, 4(3), 211-222.
    Li, Q., Valerio, M. S., & Kirkwood, K. L. (2012). MAPK usage in periodontal disease progression. J Signal Transduct, 2012, 308943.
    Machado, F. S., Esper, L., Dias, A., Madan, R., Gu, Y., Hildeman, D., et al. (2008). Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6. J Exp Med, 205(5), 1077-1086.
    Machado, F. S., Johndrow, J. E., Esper, L., Dias, A., Bafica, A., Serhan, C. N., et al. (2006). Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med, 12(3), 330-334.
    Makrantonaki, E., & Zouboulis, C. C. (2007). Testosterone metabolism to 5alpha-dihydrotestosterone and synthesis of sebaceous lipids is regulated by the peroxisome proliferator-activated receptor ligand linoleic acid in human sebocytes. Br J Dermatol, 156(3), 428-432.
    Medvedev, A. E., Sabroe, I., Hasday, J. D., & Vogel, S. N. (2006). Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J Endotoxin Res, 12(3), 133-150.
    Miller, L. S., & Modlin, R. L. (2007). Toll-like receptors in the skin. Semin Immunopathol, 29(1), 15-26.
    Mirshahpanah, P., & Maibach, H. I. (2007). Models in acnegenesis. Cutan Ocul Toxicol, 26(3), 195-202.
    Nagy, I., Pivarcsi, A., Kis, K., Koreck, A., Bodai, L., McDowell, A., et al. (2006). Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect, 8(8), 2195-2205.
    Nagy, I., Pivarcsi, A., Koreck, A., Szell, M., Urban, E., & Kemeny, L. (2005). Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. Journal of Investigative Dermatology, 124(5), 931-938.
    Nakatsuji, T., Kao, M. C., Fang, J. Y., Zouboulis, C. C., Zhang, L., Gallo, R. L., et al. (2009). Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. Journal of Investigative Dermatology, 129(10), 2480-2488.
    Nakatsuji, T., Liu, Y. T., Huang, C. P., Zoubouis, C. C., Gallo, R. L., & Huang, C. M. (2008). Antibodies elicited by inactivated propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: relevance to therapy for acne vulgaris. Journal of Investigative Dermatology, 128(10), 2451-2457.
    Nenci, A., Huth, M., Funteh, A., Schmidt-Supprian, M., Bloch, W., Metzger, D., et al. (2006). Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet, 15(4), 531-542.
    Neufang, G., Furstenberger, G., Heidt, M., Marks, F., & Muller-Decker, K. (2001). Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci U S A, 98(13), 7629-7634.
    Olutunmbi, Y., Paley, K., & English, J. C., 3rd. (2008). Adolescent female acne: etiology and management. J Pediatr Adolesc Gynecol, 21(4), 171-176.
    Park, E. J., Kim, S. A., Choi, Y. M., Kwon, H. K., Shim, W., Lee, G., et al. (2011). Capric Acid Inhibits NO Production and STAT3 Activation during LPS-Induced Osteoclastogenesis. PLoS ONE, 6(11).
    Pitha, P. M. (2004). Unexpected similarities in cellular responses to bacterial and viral invasion. Proc Natl Acad Sci U S A, 101(3), 695-696.
    Qi, S., Xin, Y., Guo, Y., Diao, Y., Kou, X., Luo, L., et al. (2012). Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-kappaB signaling pathways. Int Immunopharmacol, 12(1), 278-287.
    Schuster, M., Zouboulis, C. C., Ochsendorf, F., Muller, J., Thaci, D., Bernd, A., et al. (2011). Peroxisome proliferator-activated receptor activators protect sebocytes from apoptosis: a new treatment modality for acne? Br J Dermatol, 164(1), 182-186.
    Serhan, C. N. (2007). Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol, 25, 101-137.
    Siener, R., Ehrhardt, C., Bitterlich, N., & Metzner, C. (2011). Effect of a fat spread enriched with medium-chain triacylglycerols and a special fatty acid-micronutrient combination on cardiometabolic risk factors in overweight patients with diabetes. Nutr Metab (Lond), 8, 21.
    Sobrado, M., Pereira, M. P., Ballesteros, I., Hurtado, O., Fernandez-Lopez, D., Pradillo, J. M., et al. (2009). Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARgamma-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci, 29(12), 3875-3884.
    Svensson, C. I., Zattoni, M., & Serhan, C. N. (2007). Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. Journal of Experimental Medicine, 204(2), 245-252.
    Takaoki, M., & Kawaji, H. (1980). Impaired antibody response against T-dependent antigens in rhino mice. Immunology, 40(1), 27-32.
    Tortora, G. J. (2005). Principles of Human Anatomy (10 ed.)(John Wiley & Sons, Inc.).
    Trivedi, N. R., Cong, Z., Nelson, A. M., Albert, A. J., Rosamilia, L. L., Sivarajah, S., et al. (2006). Peroxisome proliferator-activated receptors increase human sebum production. Journal of Investigative Dermatology, 126(9), 2002-2009.
    Vowels, B. R., Yang, S., & Leyden, J. J. (1995). Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infect Immun, 63(8), 3158-3165.
    Wang, X. M., Kim, H. P., Nakahira, K., Ryter, S. W., & Choi, A. M. (2009). The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J Immunol, 182(6), 3809-3818.
    Webster, G. F., Ruggieri, M. R., & McGinley, K. J. (1981). Correlation of Propionibacterium acnes populations with the presence of triglycerides on nonhuman skin. Appl Environ Microbiol, 41(5), 1269-1270.
    Werz, O., Burkert, E., Fischer, L., Szellas, D., Dishart, D., Samuelsson, B., et al. (2002). Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J, 16(11), 1441-1443.
    Werz, O., Klemm, J., Samuelsson, B., & Radmark, O. (2000). 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5261-5266.
    Wille, J. J., & Kydonieus, A. (2003). Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol Appl Skin Physiol, 16(3), 176-187.
    Williams, H. C., Dellavalle, R. P., & Garner, S. (2012). Acne vulgaris. Lancet, 379(9813), 361-372.
    Wrobel, A., Seltmann, H., Fimmel, S., Muller-Decker, K., Tsukada, M., Bogdanoff, B., et al. (2003). Differentiation and apoptosis in human immortalized sebocytes. Journal of Investigative Dermatology, 120(2), 175-181.
    Wu, W. H., Lin, B. Y., Kuo, Y. H., & Huang, C. J. (2009). Triglycerides constituted of short and medium chain fatty acids and dicarboxylic acids in Momordica charantia, as well as capric acid, inhibit PGE(2) production in RAW264.7 macrophages. Food Chemistry, 117(2), 306-311.
    Wullaert, A., Bonnet, M. C., & Pasparakis, M. (2011). NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Res, 21(1), 146-158.
    Xie, C., Kang, J., Li, Z., Schauss, A. G., Badger, T. M., Nagarajan, S., et al. (2011). The acai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-alpha and IL-6 production through inhibiting NF-kappaB activation and MAPK pathway. J Nutr Biochem.
    Yasui, Y., Hosokawa, M., Sahara, T., Suzuki, R., Ohgiya, S., Kohno, H., et al. (2005). Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids, 73(2), 113-119.
    Yokomizo, T., Izumi, T., & Shimizu, T. (2001). Leukotriene B4: metabolism and signal transduction. Arch Biochem Biophys, 385(2), 231-241.
    Yun, M. R., Im, D. S., Lee, S. J., Park, H. M., Bae, S. S., Lee, W. S., et al. (2009). 4-Hydroxynonenal enhances CD36 expression on murine macrophages via p38 MAPK-mediated activation of 5-lipoxygenase. Free Radic Biol Med, 46(5), 692-698.
    Zhang, Q., Seltmann, H., Zouboulis, C. C., & Konger, R. L. (2006). Involvement of PPARgamma in oxidative stress-mediated prostaglandin E(2) production in SZ95 human sebaceous gland cells. Journal of Investigative Dermatology, 126(1), 42-48.
    Zouboulis, C. C. (2000). Human skin: an independent peripheral endocrine organ. Horm Res, 54(5-6), 230-242.
    Zouboulis, C. C., Angres, S., & Seltmann, H. (2011). Regulation of stearoyl-coenzyme A desaturase and fatty acid delta-6 desaturase-2 expression by linoleic acid and arachidonic acid in human sebocytes leads to enhancement of proinflammatory activity but does not affect lipogenesis. Br J Dermatol, 165(2), 269-276.
    Zouboulis, C. C., Krieter, A., Gollnick, H., Mischke, D., & Orfanos, C. E. (1994). Progressive differentiation of human sebocytes in vitro is characterized by increasing cell size and altering antigen expression and is regulated by culture duration and retinoids. Experimental Dermatology, 3(4), 151-160.
    Zouboulis, C. C., Saborowski, A., & Boschnakow, A. (2005). Zileuton, an oral 5-lipoxygenase inhibitor, directly reduces sebum production. Dermatology, 210(1), 36-38.
    Zouboulis, C. C., Schagen, S., & Alestas, T. (2008). The sebocyte culture: a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Archives of Dermatological Research, 300(8), 397-413.

    下載圖示
    QR CODE