簡易檢索 / 詳目顯示

研究生: 劉立宇
論文名稱: 攝取咖啡因對熱環境下耐力性運動表現的影響
指導教授: 林正常
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 熱環境咖啡因運動表現耐力性運動
英文關鍵詞: hot environments, caffeine, performance, endurance exercise
論文種類: 學術論文
相關次數: 點閱:312下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高溫下從事長時間耐力性的運動不利於運動表現,在常溫下攝取咖啡因從事長時間耐力性的運動,對於運動表現有增補作用。本研究旨在探討攝取咖啡因後,在高溫下從事耐力性的運動,是否像在常溫下對耐力運動有增補作用。受試對象為12名國立台南大學體育系學生。受試對象攝取5mg/kg體重劑量的咖啡因或安慰劑1小時後,在兩種溫度(25℃及35℃)下以70%VO2max的負荷為運動強度騎原地腳踏車直到衰竭為止。測量的情況有四種,採平衡次序方式進行:25℃攝取咖啡因(25C)、25℃攝取安慰劑(25P)、35℃攝取咖啡因(35C)及35℃攝取安慰劑(35P)。實驗結果發現,在運動衰竭時間方面,攝取咖啡因後(25C、35C)比攝取安慰劑(25P、35P)分別顯著的改善了10分41秒(68分38秒 ± 15分26秒 vs. 57分57秒 ± 12分51秒)及10分21秒(53分28秒 ± 14分56秒 vs. 43分01秒 ± 12分26秒)。血漿游離脂肪酸(FFA)濃度在兩種溫度(25℃及35℃)咖啡因與安慰劑攝取前沒有顯著差異,但在攝取咖啡因後1小時及運動後顯著高於安慰劑,攝取咖啡因時,運動衰竭後顯著高於攝取後1小時及攝取前,同時,攝取後1小時顯著高於攝取前。攝取安慰劑時,運動衰竭後顯著高於攝取後1小時及攝取前,但攝取後1小時及攝取前沒有顯著差異。呼吸交換率(RER)在兩種溫度沒有顯著差異;同時在運動前與運動後10、20、30分鐘及運動衰竭時五個時間也都沒有顯著差異。攝取咖啡因與安慰劑之間也都沒有顯著差異。乳酸(La)濃度在兩種溫度沒有顯著差異;在攝取咖啡因與安慰劑前、攝取後1小時及運動衰竭時都沒有顯著差異。運動自覺量表指數(RPE)在運動後10、20及30分鐘,攝取咖啡因顯著低於安慰劑,但在運動衰竭時則沒有顯著差異。本研究結果顯示,攝取咖啡因有助於在35℃溫度長時間耐力運動的運動表現,運動表現的改善關係不在於升高的血漿FFA濃度,而可能是疲勞感的降低所致。

    關鍵詞:熱環境、咖啡因、運動表現、耐力性運動

    The performance of prolonged endurance exercise can be compromised by conditions of high heat. Caffeine (CAF) has been demonstrated to be a potent ergogenic aid during prolonged endurance exercise in thermoneutral. The purpose of this study was to determine if CAF ingestion could enhance exercise at high temperature. Subjects are 12 male students of National of University of Tainan performed submaximal endurance exercise (SEE) to exhaustion at two temperatures (25℃, 35℃). Subjects received either CAF (5mg/kg) or placebo (PL) capsules 1 h prior to SEE in a double-blind crossover design. The subjects were cycling at approximately 70%VO2max during each of four conditions: (1) 25℃ CAF (25C); (2) 25℃ PL (25P); (3) 35℃ CAF (35C); (4) 35℃ PL (35P). Time to exhaustion were significantly increased (p<.05) after CAF (25C:68.6 min ± 15.4 and 35C:53.5 min ±14.9) ingestion compared with PL (25P:57.9 min ± 12.8 and 35P:43.1 min ± 12.4). The plasma free fatty acid (FFA) concentration was no significant difference before CAF and PL ingestion, after an hour CAF ingestion and at exhaustion of the plasma FFA concentration were significantly increased in connection with PL ingestion at two temperatures (25℃, 35℃). There was no significant difference in respiratory exchange ratio (RER) between two temperatures. Following the CAF ingestion, when compared with PL, there were no significant differences between CAF and PL at prior to exercise, 10, 20, 30 minutes post exercise and at the time of exhaustion were observed. Lactic acid (La) concentration was not significantly different between two temperatures, before the CAF and the PL ingestion, an hours after the CAF and the PL ingestion or the exhaustion. Rate of perceive exertion (RPE) has significantly difference between CAF and PL at 10, 20, 30 minutes following post exercise, but there was no significant difference at time of the exhaustion. These results demonstrated that CAF enhanced long-term endurance performance in hot environments, while the endurance improvement was independent from the increase in plasma FFA. The study suggests that endurance performance was related to CAF decrease in the perception of fatigue.

    Key words:hot environments, caffeine, performance, endurance exercise

    目 次 中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 謝誌……………………………………………………………………III 目次……………………………………………………………………IV 圖次……………………………………………………………………VI 表次……………………………………………………………………VII 第壹章 緒論…………………………………………………………1 一、問題背景…………………………………………………………1 二、研究目的…………………………………………………………5 三、名詞操作性定義…………………………………………………5 四、研究限制…………………………………………………………6 五、研究的重要性……………………………………………………6 第貳章 文獻探討……………………………………………………8 一、咖啡因對短時間爆發性運動表現的影響………………………9 二、咖啡因對長時間耐力性運動表現的影響………………………13 三、在熱環境下運動對運動表現的影響……………………………15 四、熱環境下攝取咖啡因對運動表現的影響………………………21 第參章 研究方法與步驟……………………………………………23 一、受試者對象………………………………………………………23 二、實驗設計…………………………………………………………24 三、測驗程序…………………………………………………………26 四、資料處理…………………………………………………………30 第肆章 結果…………………………………………………………31 一、攝取咖啡因對在二種溫度下運動之衰竭時間的影響…………31 二、攝取咖啡因對在二種溫度下運動之血漿FFA濃度的影響…….32 三、攝取咖啡因對在二種溫度下運動之乳酸的影響………………36 四、攝取咖啡因對在二種溫度下運動之RER的影響……………….39 五、攝取咖啡因對在二種溫度下運動之RPE的影響……………….44 第伍章 討論與結論…………………………………………………48 一、攝取咖啡因對在二種溫度下運動之衰竭時間的影響…………48 二、攝取咖啡因對在二種溫度下運動之血漿FFA濃度的影響…….52 三、攝取咖啡因對在二種溫度下運動之乳酸濃度的影響…………56 四、攝取咖啡因對在二種溫度下運動之RER的影響……………….57 五、攝取咖啡因對在二種溫度下運動之RPE的影響……………….59 六、綜合討論…………………………………………………………60 七、結論與建議………………………………………………………61 引用文獻………………………………………………………………63 附錄一、受試者原始基本資料………………………………………79 附錄二、運動衰竭時間的原始時間及統計資料……………………80 附錄三、FFA濃度的原始資料與統計資料………………………….81 附錄四、乳酸濃度的原始資料與統計資料…………………………84 附錄五、RER的原始資料與統計資料……………………………….87 附錄六、RPE的原始資料與統計資料……………………………….92 附錄七、健康調查表…………………………………………………96 附錄八、受試者須知及同意書………………………………………97 圖 次 圖3-1 電腦控制溫度的房間…………………………………………24 圖3-2 受試者配帶K4b2氣體分析儀…………………………………28 圖4-1 不同溫度與藥劑的運動衰竭時間……………………………31 圖4-2 在25℃攝取咖啡因與安慰劑的FFA濃度…………………….34 圖4-3 在35℃攝取咖啡因與安慰劑的FFA濃度…………………….34 圖4-4 在25℃不同時間攝取咖啡因與安慰劑的FFA濃度………….35 圖4-5 在35℃不同時間攝取咖啡因與安慰劑的FFA濃度………….35 圖4-6 在25℃攝取咖啡因與安慰劑的乳酸濃度……………………37 圖4-7 在35℃攝取咖啡因與安慰劑的乳酸濃度……………………38 圖4-8 在25℃不同時間攝取咖啡因與安慰劑的乳酸濃度…………38 圖4-9 在35℃不同時間攝取咖啡因與安慰劑的乳酸濃度…………39 圖4-10 在25℃與35℃攝取咖啡因與安慰劑前的RER………………41 圖4-11 在25℃與35℃攝取咖啡因與安慰劑運動後10分鐘的RER…42 圖4-12 在25℃與35℃攝取咖啡因與安慰劑運動後20分鐘的RER…42 圖4-13 在25℃與35℃攝取咖啡因與安慰劑運動後30分鐘的RER…43 圖4-14 在25℃與35℃攝取咖啡因與安慰劑運動衰竭時的RER……43 圖4-15 在25℃與35℃攝取咖啡因與安慰劑運動後10分鐘的RPE…46 圖4-16 在25℃與35℃攝取咖啡因與安慰劑運動後20分鐘的RPE…46 圖4-17 在25℃與35℃攝取咖啡因與安慰劑運動後30分鐘的RPE…47 圖4-18 在25℃與35℃攝取咖啡因與安慰劑運動衰竭時的RPE……47 表 次 表3-1 受試者基本資料……………………………………………….23 表4-1 運動衰竭時間之平均數與標準差…………………………….31 表4-2 攝取咖啡因與安慰劑血漿FFA濃度之平均數與標準差………33 表4-3 攝取咖啡因與安慰劑乳酸濃度之平均數與標準差………….37 表4-4 運動前攝取咖啡因與安慰劑RER之平均數與標準差…………40 表4-5 運動後10分鐘攝取咖啡因與安慰劑RER之平均數與標準差…40 表4-6 運動後20分鐘攝取咖啡因與安慰劑RER之平均數與標準差…40 表4-7 運動後30分鐘攝取咖啡因與安慰劑RER之平均數與標準差…41 表4-8 運動衰竭時攝取咖啡因與安慰劑RER之平均數與標準差……41 表4-9 運動中10分鐘攝取咖啡因與安慰劑RPE之平均數與標準差…44 表4-10 運動中20分鐘攝取咖啡因與安慰劑RPE之平均數與標準差.45 表4-11 運動中30分鐘攝取咖啡因與安慰劑RPE之平均數與標準差.45 表4-12 衰竭時攝取咖啡因與安慰劑RPE之平均數與標準差……….45

    引用文獻
    Anderson, D. E., & Hickey, M. S. (1994). Effects of caffeine on the metabolic and catecholamine responses to exercise in 5 and 28 degrees C. Medicine and Science in Sports and Exercise, 26, 453-458.
    Anseleme, F., Collomp, K., Mercier, B., Ahmaidi, S., & Prefaut, C. (1992). Caffeine increases maximal anaerobic power and blood lactate concentration. European Journal of Applied Physiology, 65, 188-191.
    Aragon, J., Tornheim, J., & Lowenstein, J. (1980). On a possible role of IMP in the regulation of phosphorylase activity in skeletal muscle. FEBS Letters, 117(Suppl.), K56-64
    Bell, D.G., & McLellan, T. M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93, 1227-1234.
    Berglund, B., & Hemmingsson, P. (1982). Effects of caffeine ingestion on exercise performance at low and high altitudes in cross-country skiers. International Journal of Sports Medicine, 3, 234-236.
    Bond, V., Gresham, K., McRae, J., & Tearney, R. W. (1986). Caffeine ingestion and isokinetic strength. British Journal of Sports Medicine, 20, 135-137.
    Booth, J., Marino, F., & Ward, J. J. (1997). Improved running performance in hot humid conditions following whole body precooling. Medicine and Science in Sports and Exercise, 29, 943-949.
    Borg, G. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14, 377-381.
    Brooks, G. A., Hittelman, K. J., Faulkne,r J, A., & Beyer, R. E. (1971). Temperature, skeletal muscle mitochondrial functions, and oxygen debt. American Journal of Physiology, 220, 1053-1959.
    Brown, D. A., Jew, K. N., Sparagna, G. C., Musch, T. I., & Moore, R. L. ( 2003 ). Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. Journal of Applied Physiology, 95, 2510 - 2518.
    Brown, N. J., Stephenson, L. A., Lister, G., Nadel, E. R. (1982). Relative anaerobiosis during heavy exercise in the heat. Federation Proceedings, 41, 1677-1682.
    Bruce, C. R., Anderson, M. E., Fraser, S. F., Stepto, N. K., Klein, R., Hopkins, W. G., & Hawley, J. A. (2000). Enhancement of 2000-m rowing performance after caffeine ingestion. Medicine and Science in Sports and Exercise, 32, 1958-1963.
    Chesley, A., Hultman, E., & Spriet, L. (1995). Effects of epinephrine infusion on muscle glycogenolysis during intense aerobic exercise. American Journal of Physiological Endocrinology and Metabolism, 268, E127-134.
    Chesley, A., Howlett, R., Heigenhauser, G., Hultman, E., & Spriet, L. (1998). Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 275, R596-603.
    Cohen, B. S., Nelson, A.G., Prevost., M. C., Thompson., G. D., Marx., B. D., & Morries, G. S. (1996). Effect of caffeine ingestion on endurance racing in heat and humidity. European Journal of Applied Physiology, 73, 358-363.
    Cole, K.J., Costill, D.L., Starling, R.D., Goodpaster, B.H., Trappe, S.W., & Fink, W.J. (1996). Effect of caffeine ingestion on perception of effort and subsequent work production. International Journal of Sport Nutrition, 6, 14-23.
    Collomp, K., Ahmaidi, S., Audran, M., Chanal, J.L., & Prefaut, C. (1991). Effect of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. International Journal of Sports Medicine, 12, 439-443.
    Collomp, K., Ahmaidi, S., Chatard., J. C., Audran, M., & Prefaut, C. (1992). Benefits of caffeine on sprint performance in trained and untrained swimmers. European Journal of Applied Physiology, 64, 377-380.
    Conlee, R. K. (1991). Amphetamine, caffeine, and cocaine: Ergogenics-enhancement of performance in exercise and sport. In D. R. Lamb, & M. H. Williams (Eds.), Perspectives in Exercise Science and Sports Medicine (pp. 285-330). Brown, Indianapolis, Ind.
    Costill, D. L., Dalsky, G. P., & Fink, W, J. (1978). Effect of caffeine ingestion on metabolism and exercise performance. Medicine and Science in Sports, 10, 155-158.
    Cox, G. R., Desbrow, B., Montgomery, P. G., Anderson, M. E., Bruce, C. R., Macrides, T. A., Martin, D. T., Moquin, A., Roberts, A., Hawley, J. A., & Burke, L. M. (2002). Effect of different protocols of caffeine intake on metabolism and endurance performance. Journal of Applied Physiology, 93, 990-999.
    Daly, M, J., Bruns, R. F., & Snyder, S. H. (1981). Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Science, 28, 2083-2097.
    Davis, J. M., Zhao, Z., Stock, H. S., Mehl, K. A., Buggy, J., & Hand, G. A. (2003). Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284, R399-404.
    Demirel, H. A., Powers, S. K., Zergeroglu,M. A., Shanely, R. A., Hamilton,K., Coombes, J. & Naito, H. (2001). Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Journal of Applied Physiology, 91, 2205 - 2212.
    Dobson, G., Yamamoto, E., & Hochachka, P. (1986). Phosphofructokinase control in muscle: nature and reversal of pH-dependent ATP in inhibition. American Journal of Physiology, 250, R71-76.
    Dodd, S. L., Herb, R. A., & Powers, S. K. (1993). Caffeine and exercise performance. Sports Medicine, 15, 14-23.
    Drust, B., Rasmussen, P., Mohr, M., Nielsen, B., & Nybo, L. (2005). Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiological Scandinavica, 183, 181-190.
    Essig, D., Costill, D., & Van Handel, P. (1980). Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling. International Journal of Sports Medicine, 1, 86-90.
    Falk, B., Burstein, R., & Rosenblum J. (1990). Effects of caffeine ingestion on body fluid balance and thermoregulation during exercise. Canadian Journal of Physiology Pharmacology, 68, 889-892.
    Febbraio, M. A., Carey, M. F., Snow, R. J., Stathis, C. G., & Hargreaves, M. (1996). Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. American Journal of Physiology, 271, R1251-1255.
    Febbraio, M. A., Lambert, D. L., Starkie, R. L., Proietto, J., & Hargreaves, M. (1998). Effect of epinephrine on muscle glycogenolysis during exercise in trained men. Journal of Applied Physiology, 84, 465-470.
    Febbraio, M. A., Murton, P., Selig, S. E., Clark, S. A., Lambert, D. L., Angus, D. J., & Carey, M. F. (1996). Effect of CHO ingestion on exercise metabolism and performance in different ambient temperatures. Medicine and Science in Sports and Exercise, 28, 1380-1387.
    Febbraio, M.A. (2001). Alterations in energy metabolism during exercise and heat stress. Sports Medicine, 31, 47-59.
    Fink, W. J., Costill, D. L., & Van Handel, P. J. (1975). Leg muscle metabolism during exercise in the heat and cold. European Journal of Applied Physiology and Occupational Physiology, 34, 183-190.
    Flinn, S., Gregory, J., McNaughton, L. R., Tristram, S., & Davies, P. (1990). Caffeine ingestion prior to incremental cycling to exhaustion in recreational cyclists. International Journal of Sports Medicine, 11, 188-193.
    Fredholm, B. B. (1985). On the mechanism and action of thephylline and caffeine. Acta Medica Scandinavica, 217, 149-153.
    Fryer, M. W., & Neering, I. R. (1989). Actions of caffeine on fast- and slow-twitch muscles of the rat. Journal of Physiology, 416, 435-454.
    Fulco, C. S., Rock, P. B., Trad, L. A., Rose, M. S., Forte, V. A., Jr, Young, P. M., & Cymerman, A. (1994). Effect of caffeine on submaximal exercise performance at altitude. Aviation, Space, and Environmental Medicine, 65, 539-545.
    Fuller, A., Carter, R. N., & Mitchell, D. (1998). Brain and abdominal temperatures at fatigue in rats exercising in the heat. Journal of Applied Physiology, 84, 877-83.
    Galloway, S. D., & Maughan, R. J. (1997). Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Medicine and Science in Sports and Exercise, 29, 1240-1249.
    Gonzalez-Alonso J (1998). Separate and combined influences of dehydration and hyperthermia on cardiovascular responses to exercise. International Journal of Sports Medicine, 19, S111-114.
    Gonzalez-Alonso, J., Teller, C., Andersen, S. L., Jensen, F. B., Hyldig, T., & Nielsen B. (1999). Influence of body temperature on the development of fatigue during prolonged exercise in the heat. Journal of Applied Physiology, 86, 1032-1039.
    Gordon, N. F., Myburgh, J. L., & Kruger, P. E . (1982). Effects of caffeine ingestion of thermoregulatory and myocardial function during endurance performance. South Africa Medicine Journal, 62, 644-647.
    Graham, T. E., & Spriet, L. L. (1991). Performance and metabolic responses to a high caffeine dose during prolonged exercise. Journal of Applied Physiology, 71, 2292-2298.
    Graham, T. E., Sathasivam, P., & MacNaughton. K. W. (1991). Influence of cold, exercise, and caffeine on catecholamines and metabolism in men. Journal of Applied Physiology, 70, 2052-2058.
    Graham, T. E., & Spriet, L. L. (1995). Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. Journal of Applied Physiology, 78, 867-874.
    Graham, T. E., Hibbert, E., & Sathasivam, P. (1998). Metabolic and exercise endurance effects of coffee and caffeine ingestion. Journal of Applied Physiology, 85, 883-889.
    Graham, T. E., Helge, J. W., MacLean, D. A., Kiens, B., & Richter, E. A. (2000). Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. The Journal of Physiology, 529, 837-847.
    Graham, T. E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Medicine. 31, 785-807.
    Greer, F., Friars, D., & Graham, T. E. (2000). Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance. Journal of Applied Physiology, 89, 1837-1844.
    Gulati, J., & Babu, A. (1985). Contraction kinetics of intact and skinned frog fibers and degree of activation. Journal of General Physiology, 86, 479-500.
    Hargreaves, M., & Febbraio, M. (1998). Limits to exercise performance in the heat. International Journal of Sports Medicine,19(Suppl), S115-116.
    Hunter, A.M., St Clair Gibson A, Collins, M., Lambert, M., & Noakes, T. D. (2002). Caffeine ingestion does not alter performance during a 100-km cycling time-trial performance. International Journal of Sport Nutrition and Exercise Matabolism, 12, 438-452.
    Harris, M. B., & Starnes, J. W. (2001). Effects of body temperature during exercise training on myocardial adaptations. American Journal of Physiology, Heart and Circulatory Physiology, 280, 2271 - 2280.
    Ivy, J., Costill, D., Fink, W., & Lower, R. (1979). Influence of caffeine and carbohydrate feedings on endurance performance. Medicine and Science in Sports and Exercise, 11, 6-11.
    Jackman, M., Wendling, P., Friars, D., & Graham, T. E. (1996). Metabolic catecholamine, and endurance responses to caffeine during intense exercise. Journal of Applied Physiology, 81, 1658-1663.
    Jacobson, B.H., & Edgley, B. M. (1987). Effect of caffeine on simple reaction time and movement time. Aviate Space Environment Medicine, 58, 1153-1157.
    Jacobson, B. H., & Kulling, F. A. (1989). Health and ergogenic effects of caffeine. British Journal of Sports Medicine, 23, 34-40.
    Jacobson, B. H., Weber, M. D., Claypool, L., & Hunt, L. E., (1992). Effect of caffeine on maximal strength and power in elite male athletes, British of Journal Sports Medicine, 26, 276-280.
    Kamimori, G.H., Somani, S.M., Knowlton, R. G., & Perkins, R. M. (1987). The effects of obesity and exercise on the pharmacokinetics of caffeine in lean and obese volunteers. European Journal of Clinical Pharmacology, 31, 595-600.
    Koga, S., Shiojiri, T., Kondo, N., & Barstow, T. J. (1997). Effect of increased muscle temperature on oxygen uptake kinetics during exercise. Journal of Applied Physiology, 83, 1333 - 1338.
    Kovacs, E. M., Stegen, J., & Brouns, F. (1998). Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. Journal of Applied Physiology, 85, 709-715.
    Laurent, D., Schneider, K. E., Prusaczyk, W. K., Franklin, C., Vogel, S. M., & Krssak, M. (2000). Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. The Journal of Clinical Endocrinology and Metabolism, 85, 2170-2175.
    Lee, D. T., & Haymes, E. M. (1995). Exercise duration and thermoregulatory responses after whole body precooling. Journal of Applied Physiology, 79, 1971-1976.
    Lopes, J. M., Aubier, M., Jardim, J., Aranda, J. V., & Macklem, P. T. (1983). Effect of caffeine on skeletal muscle function before and after fatigue. Journal of Applied Physiology, 54, 1303-1305.
    MacIntosh, B. R., & Gardiner, P. F. (1987). Posttetanic potentiation and skeletal muscle fatigue: interaction with caffeine. Canadian Journal of Physiology and Pharmacology, 65, 260-268.
    McCall, A. L., Millington, W. R., & Wurtman, R. J. (1982). Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sciences, 31, 2709-2715.
    McNaughton, L. R. (1986). The influence of caffeine ingestion on incremental treadmill running. British Journal of Sports Medicine 20, 109-112.
    Mills, P. C., Smith, N. C., Casas, I., Harris, P., Harris, R. C., & Marlin, D. J. (1996). Effects of exercise intensity and environmental stress on indices of oxidative stress and iron homeostasis during exercise in the horse. European Journal of Applied Physiology and Occupational Physiology, 74, 60-66.
    Mohr, T., Van Soeren, M., Graham, T., & Kjaer, M. (1998). Caffeine ingestion and metabolic responses of tetrapalegic humans during electrical cycling. Journal of Applied Physiology, 85, 979-985.
    Mougios, V., Ring, S., Petridou, A., & Nikolaidis, M. G. (2003). Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum. Journal of Applied Physiology, 94, 476-484.
    Nielsen, B., Hales, J. R., Strange, S., Christensen, N. J., Warberg, J., & Saltin, B. (1993). Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. Journal of Physiology, 460, 467-485.
    Nielsen, B., Savard, G., Richter, E. A., Hargreaves, M., & Saltin, B. (1990). Muscle blood flow and muscle metabolism during exercise and heat stress. Journal of Applied Physiology, 69, 1040-1046.
    Nielsen, B., Strange, S., Christensen, N. J., Warberg, J., & Saltin, B. (1997). Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflgers Archiv: European Journal of Physiology, 434, 49-56.
    Nybo, L., & Nielsen, B. (2001). Hyperthermia and central fatigue during prolonged exercise in humans. Journal of Applied Physiology, 91, 1055-1060.
    Parkin, J. M., Carey, M. F., Zhao, S., & Febbraio, M. A. (1999). Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. Journal of Applied Physiology, 86, 902-908.
    Pasman, W. J., Van Baak, M. A., Jeukendrup, A. E., & De Haan, A. (1995). The effect of different dosages of caffeine on endurance performance time. International Journal of Sports Medicine, 16, 225-230.
    Power, S. K., & Dodd, S. L. (1985). Caffeine and endurance performance. Sports Medicine, 2, 165-174.
    Rall, T. W. (1985). Central nervous system stimulants. In A. G. Gilman, L. S. Goodman, T. W. Rall, & F. Murad (Eds.). The Pharmacological Basis of Therapeutics (pp.589-603). New York, NY: MacMillan.
    Raguso, C., Coggan, A., Sidossis, L., Gastaldelli, A., & Wolfe, R. (1996). Effect of theophylline on substrate metabolism during exercise. Metabolism, 45, 1153-1160.
    Ryu, S., Choi, S. K., Joung, S. S., Suh, H., Cha, Y. S., Lee, S., & Lim, K. (2001). Caffeine as a lipolytic food component increases endurance performance in rats and athletes. Journal of Nutritional Science and Vitaminology, 47, 139-146.
    Sandow, A. (1969). Potentiation of muscular contraction. Arch Physical Medicine Rehabilitation, 45, 62-81.
    Sasaki, H., Maeda, J., Usui, S., & Ishiko, T. (1987). Effect of sucrose and caffeine ingestion on performance of prolonged strenuous running. International Journal of Sports Medicine, 8, 261-265.
    Sawka, M. N., & Wenger, C. B. (1988). Physiological responses to acute exercise heat stress. In: K. B. Pandolf, M. N. Sawka, & R. R. Gonzalez, (Eds.). Human Performance Physiology and Environmental Medicine at Terrestrial Extremes (pp.1-38). Indianapolis,Ind:Benchmark.
    Sawka, M. N., & Pandolf, K. B. (1990). Effects of body water loss on physiological function and exercise performance: Fluid homeostasis during exercise. In: C. V. Gisolfi, & D. R. Lamb (Eds.). Perspectives in Exercise Science and Sports Medicine (pp.1-38). Indianapolis,Ind:Benchmark.
    Sawka, M. N., Young, A. J., Latzka, W. A., Neufer, P. D., Quigley, M. D., & Pandolf, K. B. (1992). Human tolerance to heat strain during exercise: influence of hydration. Journal of Applied Physiology, 73, 368-375.
    Savard. G. K., Nielsen, B., Laszczynska, J., Larsen, B.E., & Saltin, B. (1998). Muscle blood flow is not reduced in humans during moderate exercise and heat stress. Journal of Applied Physiology, 64,649-657.
    Sinclair, C. J., & Geiger, J. D. (2000). Caffeine use in sports. A pharmacological review. The Journal of Sports Medicine and Physical Fitness, 40, 71-79.
    Siple, P. A., & Passel, C. F. (1945). Measurements of dry atmospheric cooling in subfreezing temperatures. Proceedings of The American Philosophical Society, 89, 177-199.
    Skidmore, R., Gutierrez, J. A., Guerriero, V. Jr., & Kregel, K. C. (1995). HSP70 induction during exercise and heat stress in rats: role of internal temperature. American Journal of Physiology, 268, R92-97.
    Smith, D. L., Tong, J. E., & Leigh, G. (1977). Combined effects of tobacco on the components of choice reaction time, heart rate and hand steadiness. Perception Motor Skill, 45, 635-639.
    Spriet, L. L., MacLean, D. A., Dyck, D. J., Hultman, E., Cederblad, G., & Graham, T. E. (1992). Caffeine ingestion and muscle metabolism during prolonged exercise in humans. American Journal of Physiology, 262, E891-898.
    Spriet, L. L., & Howlett, R. A. (2000). Caffeine. In: R. J. Maughan (Ed.). Nutrition in Sport (pp.379-392). Oxford: Blackwell Scientific.
    Starkie, R. L., Hargreaves, M., Lambert, D. L., Proietto, J., & Febbraio, M. A. (1999). Effect of temperature on muscle metabolism during submaximal exercise in humans. Experimental Physiology, 84, 775-784.
    Stephenson, D., & Williams, D. (1981). Calcium activated force responses in fast and slow twitch skinned muscle fibers of the rat at different temperatures. Journal of Physiology, 317, 281-302.
    Tarnopolsky, M., & Cupido, C. (2000). Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. Journal of Applied Physiology, 89, 1719-1724.
    Tarnopolsky, M. A., Atkinson, S. A., Macdougall, J. D., Sale, D. G., & Sutton, J. R. (1989). Physiological responses to caffeine during endurance running in habitual caffeine users. Medicine and Science in Sports and Exercise, 21, 418-424.
    Trice, I., & Haymes, E. M. (2004). Effects of caffeine ingestion on exercise-induced changes during high-intensity, intermittent exercise. International Journal of Sport Nutrition, 5, 37-44.
    Tucker, R., Rauch, L., Harley, Y. X., & Noakes, T. D. (2004). Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflgers Archiv: European Journal of Physiology, 448, 422-430.
    Van Baak, M. A., & Saris, W. H. (2000). The effect of caffeine on endurance performance after nonselective beta-adrenergic blockade. Medicine and Science in Sports and Exercise, 32, 499-503.
    Van Soeren, M. H., Sathasivam, P., Spriet, L. L., & Graham, T. E. (1993). Caffeine metabolism and epinephrine responses during exercise in users and nonusers. Journal of Applied Physiology, 75, 805-812.
    Van Soeren, M.H., Mohr, T., Kjaer, M., & Graham, T. E. (1996). Acute effects of caffeine ingestion at rest in humans with impaired epinephrine responses. Journal of Applied Physiology, 80, 999-1005.
    Van Soeren, M.H., & Graham, T. E. (1998) Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. Journal of Applied Physiology, 85, 1493-1501.
    Walters, T. J., Ryan, K. L., Tate, L. M., & Mason, P. A. (2000). Exercise in the heat is limited by a critical internal temperature. Journal of Applied Physiology, 89, 799 - 806.
    Warmington, S. A, Hargreaves, M., & Williams, D. A. (1996). A method for measuring sarcoplasmic reticulum calcium uptake in the skeletal muscle using Fura-2. Cell Calcium, 20, 73-82.
    Wemple, R. D., Lamb, D. R., & McKeever, K. H. (1997). Caffeine vs. caffeine-free sports drinks: effects on urine production at rest and during prolonged exercise. International Journal of Sports Medicine, 18, 40-46.
    Williams, J. H., Barnes, W. S., & Gadberry, W. L. (1987). Influence of caffeine on force and EMG in rested and fatigued muscle. American Journal of Physical Medicine, 6, 169-183.
    Willis, W. T., & Jackman, M. R. (1999). Mitochondrial function during heavy exercise. Medicine and Science in Sports and Exercise, 26, 1347-1353.
    Willis, W. T., Jackman, M. R., Bizeau, M. E., Pagliassotti, M. J., & Hazel, J. R. (2000). Hyperthermia impairs liver mitochondrial function in vitro. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278, R1240-1246.
    Wyndham, C. H (1973). The physiology of exercise under heat stress. Annual Review of Physiology, 35, 193-220.
    Yaspelkis, B. B 3rd., Scroop, G. C., Wilmore, K. M., & Ivy, J. L. (1973). Carbohydrate metabolism during exercise in hot and thermoneutral environments. International Journal of Sports Medicine, 14, 13-19.
    Young, A. J. (1990). Energy substrate utilization during exercise in extreme environments. Exercise and Sport Sciences Reviews, 18, 65-117.

    QR CODE