簡易檢索 / 詳目顯示

研究生: 曾致維
Chih-Wei Tseng
論文名稱: 磁場作用下之E7向列型液晶介電弛豫行為及分子動力學探討
Magneto-dielectric Relaxation Behaviors of E7 Nematic Liquid Crystal
指導教授: 盧志權
Lo, Chi-Kuen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 向列型液晶介電弛豫磁場
英文關鍵詞: nematic liquid crystal, dielectric relaxation, magnetic field
論文種類: 學術論文
相關次數: 點閱:261下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,液晶材料在顯示科技領域中已被廣泛的應用,幾近取代傳統映像管顯示器所佔有的商業地位,但這些應用與研究仍然屬於針對液晶材料的電性分析,或是利用改質方式來提升其電特性。本研究目的在於利用介電頻譜的量測工具,根據C. W. Oseen、H. Zocher和C. F. Frank等人所提出的液晶連續彈性體理論,針對樣品幾何參數的改變,分析向列型液晶E7在外加磁場下其分子的動力行為,再利用液晶分子的光學折射率異向性,來驗證頻譜分析得到的結果。
    在介電頻譜的量測實驗中,所使用的儀器為 Agilent E4980A LCRMeter,量測的頻率範圍在20~2M Hz之間。實驗的過程中,本研究利用實驗室自製的電磁鐵對液晶樣品施加一垂直液晶樣品面的常磁場,並透過LabView程式來自動化操控實驗儀器進而量測實驗數據。而光學量測的部分,則是利用波長為632.8 nm的He-Ne Laser,藉由起偏器產生線偏振光後,利用光檢測器來量測外加場前後,穿過樣品的雷射光偏振變化。
    根據量測98 μm和9 μm兩種厚度樣品在外加偏壓與外加磁場下各別的介電頻譜,本研究討論介電頻譜對液晶樣品的物理意義,並分析介電頻譜隨不同的外加場變化以及不同的樣品厚度下,樣品中液晶分子的動力行為機制,且估計出98 μm樣品與9 μm樣品對磁場變化的臨界場大小分別約為500 Oe和3000 Oe。本研究針對98 μm樣品探討不同頻率下,隨外加磁場變化的介電實部,根據Freedericks的理論計算以及向列型液晶E7分子的磁化率異向性,來分析樣品內部液晶分子的動力行為。在介電實部隨磁場變化量測的過程中所觀察到液晶分子隨磁場的弛豫現象,本研究藉著量測開啟或關閉外加磁場後,98 μm樣品介電實部隨時間的變化,得知液晶分子隨磁場反應有類似指數型遞增或衰減的趨勢,因此利用指數增加與遞減函數對量測得到的數據進行適配,進而計算出液晶分子在不同外加磁場強度下的弛豫時間。最後利用光學量測的方式,搭配液晶本身光學折射率異向性的分析,來驗證頻譜量測結果的液晶分子動力行為,並由改變不同量測點間隔時間的實驗結果,印證本研究在介電頻譜分析所觀察到液晶隨外加磁場弛豫現象的結果。

    Liquid crystal has been well known as an electro-optical material because of its favorable properties. Most of the studies focused on improving its electro-optical properties, such as response time, driving voltage, etc. The magneto-dielectric relaxation behaviors have not yet been well clarified. Therefore, in this thesis, we study these interesting properties of E7 liquid crystal using dielectric spectroscopy method.
    The dielectric spectra are measured by an LCR meter (Agilent E4980A) in the frequency of 20 to 2 MHz. In the course of measuring, a magnetic field is applied perpendicular to sample surface. The dynamic behaviors of liquid crystal molecular under magnetic field are discussed. Under constant applied magnetic field, samples with different spacer thicknesses (9, and 98 μm, respectively) have different curvature elasticity therefore show different dynamic behaviors. Moreover, because of the Freedericks transition, the real part of permittivity (at lower frequency ranges) increases with increasing applied magnetic field. Additionally, magneto-relaxation times of two samples are determined and the results reveal that due to the molecular anisotropic, the different directions of optical indexes exhibit different transmittance characteristics. Also, the results of dielectric analysis are found to agree well with the optical measurements.

    誌謝 i 中文摘要 ii Abstract iv 目錄 v 圖目錄 vii 表目錄 xiii 第一章、 緒論 1 第一節 液晶介紹 1 1-1.1 前言 1 1-1.2 液晶的歷史與發展 2 1-1.3 液晶的分類 3 1-1.4 液晶相的分類 5 1-1.5 向列型液晶E7的介紹 7 第二節 介電頻譜 9 第三節 研究動機 12 第二章、 實驗原理 13 第一節 連續彈性體理論 13 2-1.1 液晶基本形變自由 13 2-1.2 電場對液晶分子的影響 15 2-1.3 磁場對液晶分子的影響 18 2-1.4 Freedericks Transition 20 第二節 液晶光學特性 22 第三章、 實驗儀器與方法 27 第一節 液晶樣品介紹 28 第二節 介電頻譜量測實驗儀器與方法介紹 30 3-2.1 高精準電感-電容-阻抗測量儀介紹 30 3-2.2 介電頻譜量測之變更參數與量測方法 32 第三節 光學量測實驗儀器與方法介紹 35 第四章、 實驗結果與討論 38 第一節 向列型液晶E7介電頻譜量測 39 4-1.1 不同厚度樣品外加偏壓的介電頻譜量測 42 4-1.2 不同厚度樣品外加磁場的介電頻譜量測 49 第二節 不同頻率下厚度98 μm樣品隨磁場改變的介電頻譜量測 59 第三節 厚度98 μm樣品隨磁場反應時間量測結果 70 第四節 光學量測結果 82 第五章、 結論 90 參考資料 92

    [1] 陳茂成, 工業材料雜誌, 2002年3月第183期, P94.
    [2] 松本正一,角田市良合著, 劉瑞祥譯, 液晶之基礎與應用, 國立編譯館出版,民國85年6月初版。
    [3] Williams, R., U.S.Patent 3, 322 (1962).
    [4] Heilmeier, G.H., Zanoni, L.A., and Barton, L.A.,proc. IEEE 56, 1162 (1968).
    [5] Demus, D., Mol.Cryst.Liq.Cryst. 165, 45 (1988).
    [6] D. Demus, and L. Richter, Textures of liquid crystals (Verlag Chemie, New York, 1978).
    [7] G. W. Gray, and J. W. Goodby, Smectic Liquid Crystals : Textures and Structures (Blackie Press, Glasgow London, 1984).
    [8] Friedel, G., Ann. Physique 273 (1922).
    [9] Fetgason, L. F., Scientific American 2011, 77 (1964).
    [10] Merck datas sheep.
    [11] Muklesur Rahman, Chien-Wen Hsieh, Chun-Tsai Wang, Bo-Ru Jian, Wei Lee, Dyes and Pigments 84, 128 (2010).
    [12] Chelkowski A., Dielectric Physics, (Polish Scientific Publishers, New York, 1980).
    [13] Dr. Kenneth A. Mauritz.
    [14] C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).
    [15] H. Zocher, Trans. Faraday Soc. 29, 945 (1933).
    [16] F. C. Frank, Disc. Faraday Soc. 25, 19 (1933) .
    [17] C. C. Robinson, J. Opt. Soc. America 53, 681 (1963).
    [18] Mustafa Okutan, Fahrettin Yakuphanoglu, S. Eren San, Oguz Koysal, Physica B 368, 308 (2005).
    [19] P. G. Gennes, The Physics of Liquid Crystals, (1973).
    [20] I. C. Khoo, Liquid Crystals (John-Wiley &Sons, New York, 1995).
    [21] Minoru Fukui, Hiroshi Orihara, Atsushi Suzuki, et al., Jpn.J. Appl. Phys. 29, L329 (1990).
    [22] P. L. Chen “ Ion-Charges Effects on the Physical Properties of Liquid Crystal Cells ” PH.D ’ Dissertation in NCTU (2000).
    [23] A. R. Bras, M.Dionisio, H. Huth, Ch. Schick, and A. Schonhal, Phys. Rev. E 75 (2007)
    [24] Peter Kopcansky, Ivana Potocova,Martina Koneracka, Milan Timko, A.G.M. Jansen, Jan Jadzyn, Grzegorz Czechowski, J. Magn. Magn. Mater. 85, 74 (1990).
    [25] Cole, K. S., and Cole, R. H., J. Chem. Phys. 9, 341 (1941).
    [26] D. O. Krimer, G. Demeter, and L. Kramer, Phys. Rev. E 71, 051711 (2005).
    [27] Derek Walton,, Suhaila M. Shibli, M.L. Vega, E.A. Oliveira, J. Magn. Magn. Mater. 292, 301 (2005).
    [28] T. Ostapenko, D. B. Wiant, S. N. Sprunt, A. Ja’kli, and J. T. Gleeson, Phys. Rev. Lett. 101, 247801 (2008).
    [29] P. Kopcansky, M. Koneracka, V. Zavisova, J. Jadzyn, G. Czechowski and B. Zywucki, J. Phys. IV France7 C1, 565 (1997).
    [30] D. A. Dunmur, Liquid Crystals 32, 1379 (2005).
    [31] T. J. Lin, C. C. Chen, W. Lee, S. Cheng, and Y. F. Chen, Appl. Phys. Lett. 93, 013108(2008).
    [32] Michael D. Lynch and David L. Patrick, Nano Lett. 2, 1197 (2002).
    [33] P. Nayek, S. Ghosh, S. Kundu, T. Pal Majumder, S.K. Roy, N. Bennis, J.M. Oton, R. Dabrowski, Curr. App. Phys. 10, 631 (2010).
    [34] R. Basuand G. S. Iannacchione, J. Appl. Phys. 104, 114107(2008).
    [35] A. R. E. Bras, O. Garcia, M. T. Viciosa, S. Martins, R. Sastre, C. J. Dias, J. L. Figueirinhas and M. Dionisio, Liquid Crystals 35, 429 (2008).
    [36] V. Yu. Reshetnyak, S. M. Shelestiuk, and T. J. Sluckin,Mol., Cryst. Liq. Cryst. 454, 201 (2006).
    [37] G. Iacobescu,A. L. Paun, C. Cartoaje, J. Magn. Magn. Mater. 320, 2180 (2008).
    [38] O. O. Prishchepa, A. M. Parshin, A. V. Shabanov,and V. Ya. Zyryanov, Mol. Cryst. Liq. Cryst. 488, 309 (2008).
    [39] A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, Phys. Rev. E 80, 061203 (2009).
    [40] M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, J. Phys. A: Math. Theor. 43, 015402 (2010).
    [41] B. Senyuk, H. Wonderly, M. Mathews, Q. Li, S. V. Shiyanovskii, and O. D. Lavrentovich, Phys. Rev. E 82, 041711 (2010).
    [42] E. Senturk, M. Okutan, S.E. San, O. Koysal, J. Non-Crys. Solids 354, 3525 (2008).
    [43] C. Y. Tang, S. M. Huang, W. Lee, Dyes and Pigments 88, 1 (2011).
    [44] A. Abderrahmen, F. F. Romdhane, H. B. Ouada, and A. Gharbi, Sci. Technol. Adv. Mater. 9, 025001 (2008).
    [45] A. Buka, N. Eber,W. Pesch, L. Kramer, Physics Reports 448, 115 (2007).
    [46] S. Urban, C. M. Roland, J. Non-Crys. Solids 357, 740 (2011).

    下載圖示
    QR CODE