簡易檢索 / 詳目顯示

研究生: 黃資庭
Huang, Tzu-Ting
論文名稱: 以理論計算探討具高效率反向系統間跨越性質的有機化合物設計原理與其有機發光二極體應用
A Computational Study on the Design Principles of Organic Compounds with Efficient RISC for OLED Applications
指導教授: 李祐慈
Li, Yu-Tzu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 有機發光二極體反向系統間跨越熱啟動延遲螢光雜化局部-電荷轉移激發態含時密度泛函理論
英文關鍵詞: organic light-emitting diode (OLED), reverse intersystem crossing (RISC), hybrid local charge transfer (HLCT), thermally activated delayed fluorescence (TADF), time-dependent density functional theory (TD-DFT)
DOI URL: https://doi.org/10.6345/NTNU202204450
論文種類: 學術論文
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,有機發光二極體之領域致力於發展可有效利用75 %三重態激子的有機螢光材料。目前最受注目的提高激子使用效率方法為設計具有電荷轉移激發態之有機分子,使其三重態激子更有效地透過反向系統間跨越至單重態,進而增加螢光放光。本篇論文將利用計算化學針對新一代有機發光二極體的發光分子進行探討,期望提供此類型發光分子的新設計觀點。本篇論文內容包含以下兩個部份:
    (i) 根據El-Sayed’s規則,其激發態的躍遷型態改變能有助於系統間跨越的發生,而目前大部分的熱啟動延遲螢光分子,皆在電荷轉移激發態之間進行反向系統間跨越。因此,在第一部份我們將根據自旋-軌域耦合積分值大小,探討具有電荷轉移和nπ*性質混合的激發態對於系統間跨越之影響。此外,我們也利用硫原子取代螢光素之羰基上的氧原子,觀察其重原子效應之影響。
    (ii) 由於含時密度泛函理論(TD-DFT)在計算電荷轉移激發態時,若使用缺少非局部密度交換能描述的密度泛函時,常會出現低估激發態能量的問題。因此,在第二部分,我們將利用三種不同的密度泛函,對存在類似熱啟動延遲螢光性質的雜化局部-電荷轉移分子系統做詳細的第一原理調查。此外,我們也使用線性響應溶劑模型與態特定溶劑模型,比較此兩種不同方式描述溶劑影響激發態能量的差異性。

    Recently, many efforts are devoted to converting the 75 % triplet excitons into singlet excitons in pure organic molecules for the applications in organic light-emitting diodes (OLEDs). Currently the most often applied approach involves designing a charge transfer excited state in organic molecules to facilitate efficient reverse intersystem crossing (RISC) from triplet to singlet state, hence enhancing fluorescence emission and the exciton utilization efficiency. In this thesis, we investigate these new-generation emitters by computational methods, and we expect to propose new perspectives in terms of molecular design for OLED applications. This thesis involves the following two parts:
    (i) According to the El-Sayed’s rule, the intersystem crossing (ISC) may be enhanced if the singlet and the triplet excited states inolve different transition types. However, in most systems that show thermally activated delayed fluorescence (TADF) phenomenon, it is currently believed that the RISC process occurs between the singlet and the triplet charge-transfer (CT) states (same transition type). Therefore, in the first part, we will investigate the influence of nπ*- or ππ*- mixing with the CT excited state to ISC process by computing the spin-orbit coupling (SOC) integral between various low-lying excited states. Moreover, we explore heavy atom effect by substituting the oxygen atom the carbonyl group to the sulfur atom.
    (ii) It is a well-known issue that the application of time-dependent density functional theory (TD-DFT) on charge transfer excitations often leads to a severe underestimation if the non-local exchange energy is not properly included. In the second part of this thesis, we perform a careful first-principles investigation on a hybrid local charge transfer molecular system that is known to exhibit the TADF phenomenon, using three different functionals. In addition, we evaluate the performance of two different solvation models, the linear response polarized continuum model (LR-PCM) and the state-specific PCM (SS-PCM), in predicting the charge transfer excitation energies in the solution phase.

    中文摘要 I 英文摘要 II 圖目錄 VII 表目錄 IX 第一章 緒論.. 1 1.1 有機發光二極體(Organic Light-Emitting Diode, OLED) 1 1.2 有機發光二極體基本發光原理 1 1.3 有機發光二極體的發光材料發展 3 1.3.1 雜化局部-電荷轉移激發態(Hybridized local charge transfer excited state, HLCT excited state) 5 1.4 熱啟動延遲螢光(Thermally Activated Delayed Fluorescence, TADF) 6 1.4.1 熱啟動延遲螢光關鍵的過程 6 1.4.2 單重態與三重態的能量差(∆EST) 7 1.4.3 分子間電子供體-受體(Intramolecular Donor-Acceptor)系統 9 1.5 研究目標 11 第二章 計算原理與方法 12 2.1 密度泛函理論(Density Functional Theory, DFT) 12 2.1.1 局域密度近似(Local density approximation, LDA) 15 2.1.2 廣度梯度近似(Generalized gradient approximation, GGA) 15 2.1.3 混合式密度泛函(Hybrid Functional) 16 2.1.4 範圍分離混合密度泛函(Range-Separated Hybrid Functional, RSH Functional) 16 2.2 溶劑模型 (Solvation Model) 18 2.3 自然躍遷軌域(Natural transition orbitals, NTOs) 18 2.4 自旋-軌域耦合積分值計算 20 2.5 本篇的計算流程 22 2.5.1 激發態與溶劑效應 23 2.5.2 計算軟體與參數 25 第三章 藉由有機分子的激發態混合提高系統間跨越 ISC Enhancement by State Mixing in Organic Molecules 26 3.1 系統介紹 26 3.2 激發態性質之探討 28 3.2.1 分子軌域(Molecular Orbital)與激發態受不同取代基之影響 28 3.2.2 分子軌域混合激發態之自旋-軌域耦合積分值 32 3.3 重原子效應 36 3.3.1 苯甲醛模型 36 3.3.2 以硫原子置換的螢光素衍生物 38 3.4 總結.. 42 第四章 探討雜化局部-電荷轉移激發態的計算方法 Performance of Different DFT Functionals on Hybrid Local Charge Transfer(HLCT) Excited States 44 4.1 系統介紹 44 4.1.1 電荷轉移激發態計算問題 44 4.1.2 雜化局部-電荷轉移 (Hybrid local charge transfer, HLCT)激發態 45 4.2 TPA-NZP分子基態結構優化之結果 47 4.3 使用TD-DFT計算TPA-NZP分子結果之探討 48 4.3.1 探討分析激發態躍遷性質之方法 48 4.3.2 TPA-NZP基態結構下之激發態能量及躍遷性質 51 4.3.3 TD-DFT優化激發態結構之探討 55 4.4 總結 ………………………………………………………………………..57 第五章 探討雜化局部-電荷轉移激發態之溶劑效應Solvent Effect on Hybrid Local Charge Transfer (HLCT) Excited States 60 5.1 溶劑效應 60 5.2 線性響應(Linear response)與態特定(State-specific)溶劑模型對於激發態的影響 62 5.2.1 TPA-AN 62 5.2.2 TPA-NZP 64 5.2.3 不同溶劑下TPA-NZP能階改變趨勢 67 5.3 總結…. 69 總結論 70 參考文獻 71 附錄一 附圖與附表 75 附錄二 期刊論文草稿 81

    1 Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
    2 Yao, L.; Yang, B.; Ma, Y. Sci. China. Chem. 2014, 57, 335.
    3 Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    4 Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
    5 Hung, L. S.; Chen, C. H. Mater. Sci. Eng. R-Rep. 2002, 39, 143.
    6 Joseph, S.; Ruth, S. J. Phys. D: Appl. Phys. 2008, 41, 133001.
    7 Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048.
    8 Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
    9 Kim, K. H.; Moon, C. K.; Lee, J. H.; Kim, S. Y.; Kim, J. J. Adv. Mater. 2014, 26, 3844.
    10 Lee, C. W.; Lee, J. Y. Adv. Mater. 2013, 25, 5450.
    11 Partee, J.; Frankevich, E. L.; Uhlhorn, B.; Shinar, J.; Ding, Y.; Barton, T. J. Phys. Rev. Lett. 1999, 82, 3673.
    12 Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B.; Ma, Y. Adv. Funct. Mater. 2014, 24, 1609.
    13 Pan, Y.; Li, W.; Zhang, S.; Yao, L.; Gu, C.; Xu, H.; Yang, B.; Ma, Y. Adv. Optical Mater. 2014, 2, 510.
    14 Zhang, S.; Li, W.; Yao, L.; Pan, Y.; Shen, F.; Xiao, R.; Yang, B.; Ma, Y. Chem. Commun. 2013, 49, 11302.
    15 Li, W.; Liu, D.; Shen, F.; Ma, D.; Wang, Z.; Feng, T.; Xu, Y.; Yang, B.; Ma, Y. Adv. Funct. Mater. 2012, 22, 2797.
    16 Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Angew. Chem. Int. Ed. 2014, 53, 2119.
    17 Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
    18 Zhang, Q.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Adv. Mater. 2004, 16, 432.
    19 Chihaya, A. Jpn. J. Appl. Phys. 2014, 53, 060101.
    20 Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14, 330.
    21 Li, W.; Pan, Y.; Yao, L.; Liu, H.; Zhang, S.; Wang, C.; Shen, F.; Lu, P.; Yang, B.; Ma, Y. Adv. Optical Mater. 2014, 2, 892.
    22 Kasha, M. Discussions of the Faraday Society 1950, 9, 14.
    23 Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Adv. Mater. 2013, 25, 3707.
    24 Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802.
    25 Méhes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew. Chem. Int. Ed. 2012, 51, 11311.
    26 Shizu, K.; Tanaka, H.; Uejima, M.; Sato, T.; Tanaka, K.; Kaji, H.; Adachi, C. J. Phys. Chem. C 2015, 119, 1291.
    27 Goushi, K.; Adachi, C. Appl. Phys. Lett. 2012, 101, 023306.
    28 Baleizão, C.; Berberan‐Santos, M. N. Ann. N.Y. Acad. Sci. 2008, 1130, 224.
    29 Milián-Medina, B.; Gierschner, J. Org. Electron. 2012, 13, 985.
    30 Youn Lee, S.; Yasuda, T.; Nomura, H.; Adachi, C. Appl. Phys. Lett. 2012, 101, 093306.
    31 Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.
    32 Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. Chem. Mater. 2013, 25, 3766.
    33 Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Chem. Commun. 2012, 48, 9580.
    34 Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C.-J.; Cheng, C.-H.; Tseng, M.-R.; Yasuda, T.; Adachi, C. Chem. Commun. 2013, 49, 10385.
    35 Masui, K.; Nakanotani, H.; Adachi, C. Org. Electron. 2013, 14, 2721.
    36 Komino, T.; Nomura, H.; Koyanagi, T.; Adachi, C. Chem. Mater. 2013, 25, 3038.
    37 Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111, 10439.
    38 Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289.
    39 Leininger, T.; Stoll, H.; Werner, H.-J.; Savin, A. Chem. Phys. Lett. 1997, 275, 151.
    40 Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540.
    41 Wong, B. M.; Hsieh, T. H. J. Chem. Theory Comput. 2010, 6, 3704.
    42 Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.
    43 Li, R.; Zheng, J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2010, 12, 12697.
    44 Martin, R. J. Chem. Phys. 2003, 118, 4775.
    45 Nitta, H.; Kawata, I. Chem. Phys. 2012, 405, 93.
    46 Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009.
    47 Chou, T. Towards Efficient Up-Conversion of Triplet Excitons into a Singlet State and Its Application for OLEDs- A Theoretical Perspective(Unpublished master's thesis), National Taiwan Normal University, 2014.
    48 Adamo, C.; Jacquemin, D. Chem. Soc. Rev. 2013, 42, 845.
    49 Frisch, Æ.; Frisch, M. J.; Clemente, F. R.; Trucks, G. W. Gaussian 09 User's Reference; Second Edition ed.
    50 Fukuda, R.
    51 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, 2009.
    52 ADF2013; SCM, Theoretical Chemistry: Vrije Universiteit: Amsterdam, The Netherlands,http://www.scm.com.
    53 El-Sayed, M. J. Chem. Phys. 1963, 38, 2834.
    54 Zhou, P.; Liu, J.; Yang, S.; Chen, J.; Han, K.; He, G. Phys. Chem. Chem. Phys. 2012, 14, 15191.
    55 Leung, M.-K. CHEMISTRY(The Chinese Chemical Society, Taipei) 2014, 72, 213.
    56 Xiong, X.; Song, F.; Wang, J.; Zhang, Y.; Xue, Y.; Sun, L.; Jiang, N.; Gao, P.; Tian, L.; Peng, X. J. Am. Chem. Soc. 2014, 136, 9590.
    57 Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 4888.
    58 Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. J. Am. Chem. Soc. 2001, 123, 2530.
    59 Fraga, S.; Karwowski, J.; Saxena, K. M. S. handbook of atomic data; Elsevier: Amsterdam, 1976.
    60 Ouyang, X.; Li, X.-L.; Ai, L.; Mi, D.; Ge, Z.; Su, S.-J. ACS Appl. Mater. Interfaces 2015, 7, 7869.
    61 Huang, S.; Zhang, Q.; Shiota, Y.; Nakagawa, T.; Kuwabara, K.; Yoshizawa, K.; Adachi, C. J. Chem. Theory Comput. 2013, 9, 3872.
    62 Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J. Chem. Phys. 2003, 119, 2943.
    63 Autschbach, J. ChemPhysChem 2009, 10, 1757.
    64 Li, J.-H.; Chai, J.-D.; Guo, G.-Y.; Hayashi, M. Chem. Phys. Lett. 2011, 514, 362.
    65 宋心琦; 周福添; 劉劍波 光化學; 五南, 2004.
    66 Bae, J.-S.; Son, Y.-A.; Kim, S.-H. Fibers and Polymers 2008, 9, 659.
    67 Ishimatsu, R.; Matsunami, S.; Shizu, K.; Adachi, C.; Nakano, K.; Imato, T. J. Phys. Chem. A 2013, 117, 5607.
    68 Ou, Q.; Subotnik, J. E. J. Phys. Chem. C 2013, 117, 19839.
    69 Improta, R.; Barone, V.; Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2006, 125, 054103.
    70 Cammi, R.; Corni, S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2005, 122, 104513.
    71 Fan, D.; Yi, Y.; Li, Z.; Liu, W.; Peng, Q.; Shuai, Z. J. Phys. Chem. A 2015, 119, 5233.

    無法下載圖示 本全文未授權公開
    QR CODE