Author: |
張証淯 Chang, Cheng-Yu |
---|---|
Thesis Title: |
結合馬氏田口系統與類神經網路分析法改善多感測器火災異常偵測績效 Improving the Performance of Multi-sensor Fire Anomaly Detection Based on Mahalanobis-Taguchi System and Neural Network Fusion Analysis |
Advisor: |
陳麗妃
Chen, Li-Fei |
Committee: |
陳麗妃
Chen, Li-Fei 蕭宇翔 Hsiao, Yu-Hsiang 陳隆昇 Chen, Long-Sheng |
Approval Date: | 2024/06/20 |
Degree: |
碩士 Master |
Department: |
工業教育學系 Department of Industrial Education |
Thesis Publication Year: | 2024 |
Academic Year: | 112 |
Language: | 中文 |
Number of pages: | 76 |
Keywords (in Chinese): | 異常偵測 、馬氏田口系統 、類神經網路 、長短期記憶 、多感測器火災偵測 |
Keywords (in English): | Anomaly Detection, Mahalanobis-Taguchi System, Artificial Neural Network, Long Short-Term Memory, Multi-Sensor Fire Detection |
Research Methods: | 個案研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202401387 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 162 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
為了改善多感測器火災偵測器的警報速度及準確度,本研究提出結合馬氏田口系統與類神經網路的LSTM-MTS方法。LSTM-MTS方法以馬氏田口系統作為主體進行火災異常偵測,但由於火災煙霧資料在正常狀態下,具有數值穩定且無高低變動的特性,導致無法建立正常狀態馬氏空間,因此本研究提出結合類神經網路中的長短期記憶,利用其善於處理時間序列資料的特性,將正常狀態資料進行轉換,以順利建構正常狀態馬氏空間。為了驗證本研究提出的LSTM-MTS方法,是否能夠有效提升多感測器火災偵測器的警報速度及準確度,本研究使用煙霧偵測器研發製造商A公司,以及美國國家標準暨技術研究院的火災實驗資料進行分析後,證實本研究提出的LSTM-MTS方法能夠有效提升多感測器火災偵測器的偵測績效,提早在火災偵測器實際警報之前偵測到異常,並且相較於單獨使用馬氏田口系統及類神經網路的方式,具有較佳的警報速度與準確度。
To improve the alarm speed and accuracy of multi-sensor fire detectors, this study proposes the LSTM-MTS method, which combines the Mahalanobis-Taguchi System with Long Short-Term Memory (LSTM) neural networks. The Mahalanobis-Taguchi System serves as the primary method for fire anomaly detection. However, due to the stable and non-volatile nature of fire smoke data under normal conditions, it is challenging to establish a normal state Mahalanobis space. This study addresses this issue by integrating LSTM, which excels in handling time series data, to transform normal state data, thereby successfully constructing the normal state Mahalanobis space. To validate the effectiveness of the proposed LSTM-MTS method in enhancing the alarm speed and accuracy of multi-sensor fire detectors, this study analyzes data from smoke detector manufacturer Company A and fire experiment data from the National Institute of Standards and Technology (NIST). The results confirm that the proposed method significantly improves the performance of multi-sensor fire detectors, enabling earlier anomaly detection before the actual alarm triggers. Compared to using the Mahalanobis-Taguchi System or neural networks alone, the LSTM-MTS method demonstrates superior alarm speed and accuracy.
壹、中文文獻
內政部消防署 (2023)。101至111年全國火災次數起火原因及火災損失統計表。中華民國內政部消防署全球資訊網。https://www.nfa.gov.tw/cht/index.php?code=list&flag=detail&ids=220&article_id=13264
陳弘毅 (2003)。火災學。台北市:鼎茂圖書。
蘇朝墩 (2004)。專訪世界品質大師:田口玄一博士。品質月刊,第40卷,第3期,30-32。
貳、英文文獻
Abid, F. (2021). A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technology, 57, 559–590.
Agrawal, S., & Agrawal, J. (2015). Survey on Anomaly Detection using Data Mining Techniques. Procedia Computer Science, 60, 708–713.
Ahmed, M., Mahmood, A. N., & Hu, J. (2014). Outlier Detection, CRC Press, New York, USA, 3–21, Chapter 1 (in book: The State of the Art in Intrusion Prevention and Detection).
Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A Survey of Network Anomaly Detection Techniques. Journal of Network and Computer Applications, 60, 19-31.
Ahmed, M., Mahmood, A. N., & Islam, M. R. (2016). A Survey of Anomaly Detection Techniques in Financial Domain. Future Generation Computer Systems, 55, 278-288.
Alam, S., Sonbhadra, S. K., Agarwal, S., & Nagabhushan, P. (2020). One-Class Support Vector Classifiers: A Survey. Knowledge-Based Systems, 196, 105754.
Asakura, T., Yashima, W., Suzuki, K., & Shimotou, M. (2020). Anomaly Detection in a Logistic Operating System Using the Mahalanobis–Taguchi Method. Applied Sciences, 10(12), 4376.
BS 5839-6 (2019). Fire Detection and Fire Alarm Systems for Buildings. Part 6 Code of Practice for the Design, Installation, Commissioning and Maintenance of Fire Detection and Fire Alarm System in Domestic Premises. Bristol, UK: British Standards Institution.
Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network Anomaly Detection: Methods, Systems and Tools. IEEE Communications Surveys & Tutorials, 16(1), 303-336.
Balyen, L., & Peto, T. (2019). Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. The Asia-Pacific Journal of Ophthalmology, 8(3), 264-272.
Chang, Z. P., Li, Y. W., & Fatima, N. (2019). A Theoretical Survey on Mahalanobis-Taguchi System. Measurement, 136, 501-510.
Dampage, U., Bandaranayake, L., Wanasinghe, R., Kottahachchi, K., & Jayasanka, B. (2022). Forest fire detection system using wireless sensor networks and machine learning. Scientific Reports, 12(1), 46.
FIA (2012). Design, Installation, Commissioning and Maintenance of Aspirating Smoke Detector (ASD) Systems, FIA (Fire Industry Association), UK (2006).
Falcão, F., Zoppi, T., Silva, C. B. V., Santos, A., Fonseca, B., Ceccarelli, A., & Bondavalli, A. (2019, April). Quantitative Comparison of Unsupervised Anomaly Detection Algorithms for Intrusion Detection. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (pp. 318-327).
Ghasemi, E., Aaghaie, A., & Cudney, E. A. (2015). Mahalanobis Taguchi System: A Review. The International Journal of Quality & Reliability Management, 32(3), 291-307.
Grossi, E., & Buscema, M. (2007). Introduction to artificial neural networks. European journal of gastroenterology & hepatology, 19(12), 1046-1054.
Goldstein, M., & Uchida, S. (2016). A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data. PLOS ONE, 11(4), e0152173.
Giebułtowicza, J., Ruzycka, M., Wroczynski, P., Purserb, D. A., & Stec, A. A. (2017). Analysis of Fire Deaths in Poland and Influence of Smoke Toxicity. Forensic Science International, 277, 77-87.
Gaur, A., Singh, A., Kumar, A., Kulkarni, K. S., Lala, S., Kapoor, K., ... & Mukhopadhyay, S. C. (2019). Fire sensing technologies: A review. IEEE Sensors Journal, 19(9), 3191-3202.
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222-2232.
Hauskrecht, M., Batal, I., Valko, M., Visweswaran, S., Cooper, G. F., & Clermont, G. (2013). Outlier Detection for Patient Monitoring and Alerting. Journal of Biomedical Informatics, 46, 47-55.
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support Vector Machines. IEEE Intelligent Systems and Their Applications, 13(4), 18-28.
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4), 5-14.
Holborna, P. G., Nolana, P. F., & Golt, J. (2003). An Analysis of Fatal Unintentional Dwelling Fires Investigated by London Fire Brigade between 1996 and 2000. Fire Safety Journal, 38, 1–42.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.
Johnson, P., Beyler, C., Croce, P., Dubay, C., & McNamee, M. (2017). Very Early Smoke Detection Apparatus (VESDA), David Packham, John Petersen, Martin Cole: 2017 DiNenno Prize. Fire Science Review, 6:5.
Jin, X. H., & Chow, T. W. S. (2013). Anomaly Detection of Cooling Fan and Fault Classification of Induction Motor using Mahalanobis–Taguchi System. Expert Systems with Applications, 40(15), 5787-5795.
Jordan, M. I., & Mitchell, T. M. (2015). Machine Learning: Trends, Perspectives, and Prospects. Science, 349(6245), 255-260.
Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the Artificial Neural Networks. Artificial Neural Networks: Methodological Advances and Biomedical Applications. InTech, 1-18.
Karczmarek, P., Kiersztyn, A., Pedrycz, W., & Al, E. (2020). K-Means-Based Isolation Forest. Knowledge-Based Systems, 195, 105659.
Kamoshita, T., Tabata, K., Okana, H., Takahashi, K., & Yana, H. (1998). Optimization of a Multi-Dimensional Information System Using Mahalanobis Distance. Quality Engineering Forum, 6(3), 91-99.
Kinoshita, H., Türkan, H., Vucinic, S., Naqvi, S., Bedair, R., Rezaee, R., & Tsatsakis, A. (2020). Carbon Monoxide Poisoning. Toxicology Reports, 7, 169-173.
Liparas, D., Laskaris, N., & Angelis, L. (2013). Incorporating Resting State Dynamics in the Analysis of Encephalographic Responses by Means of the Mahalanobis–Taguchi Strategy. Expert Systems with Applications, 40(7), 2621-2630.
Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413-422.
Liu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-Based Anomaly Detection. ACM Transactions on Knowledge Discovery from Data, 6(1), Article 3, 1-39.
Liu, P., Xiang, P., & Lu, D. (2023). A new multi-sensor fire detection method based on LSTM networks with environmental information fusion. Neural Computing and Applications, 35(36), 25275-25289.
McCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in Nervous Activity. The Bulletin of Mathematical Biophysics, 5, 115-133.
Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long Short-Term Memory Neural Network for Traffic Speed Prediction Using Remote Microwave Sensor Data. Transportation Research Part C: Emerging Technologies, 54, 187-197.
NIST (2005, February). NIST Report of Test FR 4016. NIST. Retrieved from https://www.nist.gov/el/nist-report-test-fr-4016
Olah, C. (2015, August). Understanding LSTM Networks. Retrieved from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97-116.
Omar, S., Ngadi, A., & Jebur, H. H. (2013). Machine Learning Techniques for Anomaly Detection: An Overview. International Journal of Computer Applications (0975-8887), 79(2).
Prockop, L. D., & Chichkova, R. I. (2007). Carbon Monoxide Intoxication: An Updated Review. Journal of the Neurological Sciences, 262, 122–130.
Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65(6), 386.
Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210-229.
Shanmuganathan, S. (2016). Artificial Neural Network Modelling: An Introduction (pp. 1-14). Springer International Publishing.
Susto, G. A., Beghi, A., & McLoone, S. (2017). Anomaly Detection Through On-Line Isolation Forest: An Application to Plasma Etching. 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 89-94.
Su, C. T., & Hsiao, Y. H. (2007). An Evaluation of the Robustness of MTS for Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 19(10), 1321-1332.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 529(7587), 484-489.
Sultan Mahmud, M., Islam, M. S., & Rahman, M. A. (2017). Smart fire detection system with early notifications using machine learning. International Journal of Computational Intelligence and Applications, 16(02), 1750009.
Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128.
Saari, J., Strömbergsson, D., Lundberg, J., & Thomson, A. (2019). Detection And Identification of Windmill Bearing Faults Using a One-Class Support Vector Machine (SVM). Measurement, 137, 287-301.
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The Performance of LSTM and BiLSTM in Forecasting Time Series. 2019 IEEE International Conference on Big Data (Big Data), 3285-3292.
SchölkopfÜ, B., Williamson, R. C., SmolaÜ, A., & Shawe-TaylorÝ, J. (2000). SV Estimation of a Distribution’s Support. Adv. Neural Inf. Process. Syst, 41, 582-588.
Taguchi, G., Chowdhury, S., & Wu, Y. (2001). The Mahalanobis-Taguchi System, McGraw-Hill Professional.
Taguchi, G., & Jugulum, R. (2002). The Mahalanobis-Taguchi strategy: A pattern technology system. John Wiley & Sons.
Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., ... & Cheng, Z. (2020). Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, 106682.
Tao, X., Peng, Y., Zhao, F., Zhao, P., & Wang, Y. (2018). A Parallel Algorithm for Network Traffic Anomaly Detection Based on Isolation Forest. International Journal of Distributed Sensor Networks, 14(11).
Taguchi, G & Rajesh, J. (2000). New Trends in Multivariate Diagnosis. Sankhyā: The Indian Journal of Statistics, Series B, 62(2), 233-248.
Widodo, A., & Yang, B. S. (2007). Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis. Mechanical systems and signal processing, 21(6), 2560-2574.
Xing, H. J., & Liu, W. T. (2020). Robust AdaBoost Based Ensemble of One-Class Support Vector Machines. Information Fusion, 55, 45-58.
Yan, H., & Ouyang, H. (2018). Financial time series prediction based on deep learning. Wireless Personal Communications, 102, 683-700.
Yan, K., You, X., Ji, X., Yin, G., & Yang, F. (2016). A Hybrid Outlier Detection Method for Health Care Big Data. 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), 157-162.