簡易檢索 / 詳目顯示

研究生: 陳姿含
論文名稱: 矽鍺通道與CESL應力層之機械性質對N型奈米元件之影響
The Effect of Mechanical Properties of Si1-xGex Channel and CESL layer on Nano-Scaled nMOSFETs
指導教授: 劉傳璽
Liu, Chuan-Hsi
李昌駿
Lee, Chang-Chun
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 94
中文關鍵詞: 矽鍺通道接觸蝕刻停止層有限元素分析延伸閘極
英文關鍵詞: SiGe channel, CESL, Finite element analysis, Protruding gate
論文種類: 學術論文
相關次數: 點閱:350下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析具矽鍺通道結構之N型電晶體,其結構尺寸對於元件之應力分佈與性能表現。該研究證實,藉由接觸蝕刻停止層結合矽鍺應力源之先進應變工程技術,能有效提升元件性能。將矽鍺通道因晶格不匹配而產生之應力,與接觸蝕刻停止層之內應力結合,組成多重應力源結構,並藉由三維有限元素分析軟體,模擬分析此結構於N型電晶體內之通道應力分佈。分別使用1.1 GPa之拉伸應力與-2 GPa之壓縮應力,做為接觸蝕刻停止層之內應力,並將0 %、 22.5 %與 25 % 做為矽鍺通道之鍺莫耳分率用以模擬分析。分析結果指出鍺濃度愈高(大於零),則晶格不匹配程度愈大,故通道產生之應力愈多。其中,固定鍺濃度為22.5 %且元件閘極寬度為10 m,當改變元件通道長度為0.11、1與10 (m) 時,該元件通道之應力趨勢與電性測量結果相符合。為了觀察三維模擬之表現而改變通道寬度予以分析,結果顯示隨著閘極寬度愈長,三維結果會逐漸收斂至二維結果,可視為一平面應變狀態。
    此外,考慮元件佈局圖對於電晶體之應力分佈與性能表現之影響,本研究利用三維有限元素分析,模擬具有內應力之接觸蝕刻停止層與矽鍺層對於延伸閘極結構與通道應力的影響。結果顯示增長延伸閘極之寬度,則延伸閘極彎曲效應增加致使通道應力增加,將使元件性能有所提升,而當延伸寬度大於1 m ,則元件通道應力逐漸趨於飽和狀態。

    In this investigation, the effect of structure size of the n-type metal-oxide field-effect transistors (nMOSFET) with SiGe channel structure on the stress distribution and performance of devices was analyzed. This study demonstrated that advanced strained engineering technology in contact etching stop layer (CESL) combined with silicon germanium (Si1-xGex) stressors can be efficiently utilized to enhance the performance of devices. Lattice mismatch stress was induced to establish an Si1-xGex channel integrated with intrinsic stress of CESL, which consists of multiple stressors, to analyze the stress contour of the concerned channel in nMOSFETs by three-dimensional (3D) finite element analysis (FEA). The types of intrinsic CESL stress considered in this study were tensile (1.1 GPa) (t-CESL) and compressive (-2.0 GPa) (c-CESL). Germanium mole fractions, including 0%, 22.5%, and 25%, utilized in the Si1-xGex channel were selected to carefully analyze their impact on the Si1-xGex channel. By contrast, when the foregoing Ge concentration of the SiGe alloy is adjusted (larger than zero), more lattice mismatch is produced. Therefore, the more channel stress generated. Especially, as compared with the electrical properties measured by the 0.11, 1, and 10 (m) of length in channel region, which the channel width is 10 m and Ge mole fraction is 22.5 %. The analytic results show that the stress trends are corresponded with the electrical properties. In order to observe the performance of three-dimensional simulation, we change the channel width to be analyzed. The results showed that when the gate width of the longer, the three-dimensional results will gradually converge to two-dimensional results, that is, a plane strain state.
    On the other hand, for the effect of layout of the nMOSFET on the stress distribution and performance of devices was analyzed. In this research, we simulated the stress contour of device induced by CESL and SiGe layer for the effect of protruding gate width through the 3D FEA. The results revealed that as the protruding gate width is increased, more bending effect of protruding gate is increased, the more stress generated that could improve device performance. When protruding gate width is greater than 1 m then the channel stress gradually become saturated.

    第一章 緒論 1 1.1 前言 1 1.2 應變工程技術於金氧半場效電晶體 1 1.3 本論文研究方向 2 第二章 文獻探討 3 2.1 金氧半場效電晶體 3 2.1.1 電晶體結構 5 2.1.2 電晶體性能 7 2.1.3 載子遷移率 8 2.2 電晶體之電壓-電流特性 10 2.2.1 輸出特性ID-VD曲線 10 2.2.2 轉移特性ID-VG曲線 12 2.2.3 次臨界特性 15 2.3 電晶體與應變工程技術 16 2.3.1 矽鍺矽特性與物理機制 18 2.3.2 全區域應變技術 21 2.3.3 局部區域應變技術 24 2.4 CESL與矽鍺通道結構 30 2.4.1 電晶體具矽鍺通道之結構 30 2.4.2 電晶體具CESL應力源之結構 36 第三章 實驗與研究方法 39 3.1 有限元素法概念 39 3.1.1 ANSYS有限元素分析 40 3.1.2 平面應力與平面應變 42 3.2 研究分析流程 46 3.2.1 實驗步驟 46 3.2.2 電性量測 46 3.2.3 模擬方法與流程 49 3.2.4 邊界條件與材料參數 54 第四章 結果與討論 59 4.1 元件具不同鍺濃度之矽鍺通道結構結合CESL應力源 59 4.1.1 具矽鍺通道結構之元件模擬結果 59 4.1.2 元件具矽鍺通道結合CESL影響通道應力之模擬結果 63 4.1.3 具矽鍺通道結構結合CESL之模擬與驗證 68 4.2 元件結合具矽鍺通道結構與CESL之閘極寬度的影響研究 72 4.2.1 具矽鍺通道之元件模擬結果 72 4.2.2 具矽鍺通道結構之元件結合CESL之元件模擬結果 74 4.3 元件具矽鍺通道結構結合CESL之延伸閘極研究 78 4.3.1 具矽鍺通道結構之元件模擬結果 79 4.3.2 具矽鍺通道結構結合CESL之元件模擬結果 81 第五章 結論與未來展望 86 5.1 應變工程技術之電晶體特性 86 5.2 有限元素法之分析模擬 87 5.3 未來展望 88 參考文獻 89 表目錄 表2-1電晶體遷移率提升所需之三維應力效應表現 25 表3-1模擬分析之材料參數列表 50 圖目錄 圖2-1 高度整合晶片範疇 4 圖2-2 簡易N型電晶體結構剖面示意圖 5 圖2-3 隨機熱運動之電子路徑 9 圖2-4 理想N型MOSFET輸出特性ID - VD曲線圖 11 圖2-5 實際N型MOSFET輸出特性ID - VD曲線圖 11 圖2-6 操作在線性區之轉移特性 13 圖2-7 操作在飽和區之轉移特性圖 14 圖2-8 電晶體之次臨界特性圖 15 圖2-9 應變工程技術分類示意圖 17 圖2-10 導電帶能谷示意圖 19 圖2-11 矽材料於矽鍺層上成為應變矽之導電帶示意圖 19 圖2-12 價電帶能帶示意圖 20 圖2-13 以虛擬矽鍺基板製作之電晶體典型應變矽結構 22 圖2-14 典型的Strained-SOI電晶體結構示意圖 23 圖2-15 矽鍺合金於絕緣層上之應變矽結構 23 圖2-16 電晶體覆蓋具有應力之氮化矽層結構 25 圖2-17 元件具有拉伸應力CESL之示意圖 27 圖2-18 矽碳/矽鍺合金重填於源極與汲極之結構 28 圖2-19 鍺含量17 %之矽鍺合金重填於源/汲極的電洞遷移率比較 28 圖2-20 元件具淺溝槽隔離結構之示意圖 29 圖2-21 元件內含矽金屬化合物結構之示意圖 29 圖2-22 具矽鍺通道之N/P型電晶體結構示意圖 31 圖2-23 Si/SiGe/Si之應力平衡示意圖 31 圖2-24 矽與矽鍺材料之能帶比較圖 33 圖2-25 具矽鍺通道結構之能帶圖 34 圖2-26 電晶體使用矽鍺通道結構之ID-VD曲線圖 34 圖2-27 長通道電晶體之載子遷移率 35 圖2-28 驅動電流與通道長度曲線圖 35 圖2-29 具CESL層之MOSFET結構其SEM圖 37 圖2-30 不同CESL應力條件之性能表現 37 圖2-31 通道長度變化在不同CESL應力作用下之通道應變模擬結果 38 圖2-32 CESL厚度變化之對應通道應力表現 38 圖3-1 ANSYS有限元素類型之示意圖 41 圖3-2 應力單元之各方向應力示意圖 44 圖3-3 平面應力狀態 45 圖3-4 平面應變狀態 45 圖3-5 具矽鍺通道之N型電晶體其實驗分析流程圖 47 圖3-6 具矽鍺通道之N型電晶體的控制組結構 48 圖3-7 有限元素模擬分析之流程圖 49 圖3-8 具矽鍺通道之元件結構佈局圖 52 圖3-9 四分之一結構對稱之矽鍺通道結合CESL之電晶體模型 52 圖3-10 具延伸閘極結構之元件佈局圖 53 圖3-11 具延伸閘極與矽鍺通道之電晶體結構 53 圖3-12 邊界條件施加於模型之邊界上 56 圖3-13 邊界條件施加於模型之節點上 56 圖3-14 實心元素單元 57 圖3-15 曲樑問題示意圖 57 圖4-1 矽鍺通道效應於閘極通道長度L=0.11 mm之不同鍺濃度於通道方向 (Sxx) 上之應力分佈 62 圖4-2 矽鍺通道應力在改變閘極長度尺寸下結合不同鍺濃度之應力趨勢 62 圖4-3 不同鍺濃度結合一1.1 GPa CESL之通道區域的應力變化曲線圖 66 圖4-4 電晶體元件具一拉伸CESL之通道受力示意圖 66 圖4-5 不同鍺濃度結合一-2.0 GPa CESL之通道區域的應力變化曲線圖 67 圖4-6 電晶體元件具一壓縮CESL之通道受力示意圖 67 圖4-7 縱向應力SXX之反轉現象模擬結果 70 圖4-8 元件通道長度為0.11 mm之ID-VD特性曲線 70 圖4-9 元件通道長度為1 mm之ID-VD特性曲線 71 圖4-10 元件通道長度為10 mm之ID-VD特性曲線 71 圖4-11 鍺濃度22.5 %於L = 22 nm時之不同閘極寬度SYY應力分佈 73 圖4-12 具矽鍺通道結構之元件在考量不同閘極寬度下之通道應力影響 73 圖4-13 矽鍺通道結合拉伸應力CESL之不同元件閘極寬度之應力影響 76 圖4-14 電晶體結構於寬度方向之剖面示意圖 76 圖4-15 矽鍺通道結合具壓縮應力CESL之不同元件閘極寬度影響應力變化圖 77 圖4-16 矽鍺通道結合具壓縮應力CESL之二維與三維趨勢比較圖 77 圖4-17 元件圖案化佈局圖與元件之四分之一對稱三維模型結構 80 圖4-18 具不同鍺濃度之矽鍺通道在不同延伸閘極下對於通道應力之影響曲線圖 80 圖4-19 具不同鍺濃度之矽鍺通道結合拉伸CESL在不同延伸閘極下之通道應力變化圖 83 圖4-20 具拉伸應力CESL在不同延伸閘極寬度下之通道應力變化圖 83 圖4-21 具拉伸應力之CESL在考慮短延伸閘極寬度尺寸下之力學行為示意圖 84 圖4-22 具拉伸應力之CESL在考慮較長延伸閘極寬度尺寸下之力學行為示意圖 84 圖4-23 具拉伸應力之CESL之力學行為 85

    [1] H. Iwai, “CMOS Technology-Year 2010 and Beyond”, Solid-State Circuits, IEEE, Vol. 34, No. 3, pp.357-366, 1999.
    [2] 工研院產業經濟與趨勢研究中心及資策會資訊市場情報中心,2015年台灣重要產業技術發展藍圖I,工研院IEK,2008。
    [3] G. E. Moore, “Cramming More Components Onto Integrated Circuits” Electronics, Vol. 38, No.8, pp. 114-117, 1965.
    [4] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
    [5] C. Mahata, M. K. Bera, P. K. Bose, and C. K. maiti, “Charge Trapping Characteristics in High-K Gate Dielectrics on Germanium”, Thin Solid Films 517, Vol. 571, No. 1, pp. 163-166, 2008.
    [6] 鄭晃忠,劉傳璽,新世代積體電路製程技術,東華書局,2011。
    [7] M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, “A 40 nm Gate Length n-MOSFET”, IEEE Transactions on Electron Devices, Vol. 42, No.10, pp. 1822-1830, 1995.
    [8] S. D. Suk, S.-Y. Lee, S.-M. Kim, E.-J. Yoon, M.-S. Kim, M. Li, C. W. Oh, K. H. Yeo, S. H. Kim, D.-S. Shin, K.-H. Lee, H. S. Park, J. N. Han, C.J.Park, J.-B. Park, D.-W. Kim, D. Park and B.-I. Ryu, “High Performance 5nm radius Twin Silicon Nanowire MOSFET (TSNWFET) : Fabrication on Bulk Si Wafer, Characteristics, and Reliability”, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 717-720, 2005.
    [9] K. Rim, J. Welser, J.L. Hoyt, and J.F. Gibbons, “Enhanced Hole Mobilities in Surface-channel Strained-Si p-MOSFETs”, Electron Devices Meeting, 1995. IEDM '95. International, pp.517-520, 1995.
    [10] Viktor Sverdlov, “Strain-Induced Effects in Advanced MOSFETs”, Springer Verlag, 2010.
    [11] O. Weber, T. Irisawa, T. Numata, M. Harada, N. Taoka, Y. Yamashita, T. Yamamoto, N. Sugiyama, M. Takenaka and S. Takagi, “Examination of Additive Mobility Enhancements for Uniaxial Stress Combined with Biaxially Strained Si, Biaxially Strained SiGe and Ge Channel MOSFETs”, Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 719-722, 2007.
    [12] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase and K. Hashimoto, “A Novel Strain Enhanced CMOS Architecture Using Selectively Deposited High Tensile And High Compressive Silicon Nitride Films”, Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 213–216, 2004.
    [13] G. Eneman, E. Simoen, P. Verheyen and K. D. Meyer, “Gate Influence on the Layout Sensitivity of Si1−xGex S/D and Si1−yCy S/D Transistors Including an Analytical Model”, IEEE Transactions on Electron Device, Vol. 55,No. 10, pp. 2703–2711, 2008.
    [14] J. S. Lim, S. E. Thompson, and J. G. Fossum, “Comparison of Threshold Voltage Shifts for Uniaxial and Biaxial Tensile-Stressed n-MOSFETs”, IEEE Electron Device Letters, Vol. 25, No. 11, pp. 731–733, 2004.
    [15] H.-M. Chen, J.-R. Hwang, Y. Li and F.-L. Yang, “Novel Strained CMOS Devices with STI Stress Buffer Layers”, VLSI Technology, Systems and Applications, 2007. VLSI-TSA 2007. International Symposium on, pp. 1-2, 2007.
    [16] C. C. Lu, J. J. Huang, W. C. Luo, T. H. Hou, and T. F. Lei, “Strained Silicon Technology: Mobility Enhancement and Improved Short Channel Effect Performance by Stress Memorization Technique on nFET Devices”, Journal of The Electrochemical Society, Vol. 157, No. 5, pp. H497-H500, 2010.
    [17] S. Takagi, J. L. Hoyt, J. J. Welser and J. F. Gibbons, “Comparative Study of Phonon-Limited Mobility of Two-Dimensional Electrons in Strained and Unstrained Si Metal-Oxide–Semiconductor Field-Effect Transistors”, Journal of Applied Physics, Vol. 80, No. 3, pp. 1567-1577, 1996.
    [18] K. Rim, R. Anderson, D. Boyd, F. Cardone, K. Chan, H. Chen, S. Christansen, J. Chu, K. Jenkins, T. Kanarsky, S. Koester, B. H. Lee, K. Lee, V. Mazzeo, A. Mocuta, D. Mocuta, P. M. Mooney, P. Oldiges, J. Ott, P. Ronsheim, R. Roy, A. Steegen, M. Yang, H. Zhu, M. Ieong and H.-S. P. Wong, “Strained Si CMOS (SS CMOS) Technology: Opportunities and Challenges”, Solid-State Electron, Vol. 47, No. 7, pp. 1133-1139, 2003.
    [19] K. N. Chiang, C. H. Chang and C. T. Peng, “Local-strain Effects in Si/SiGe/Si Islands on Oxide”, Applied Physics Letters 87, Vol. 87, No. 19, pp. 191901-191901-3, 2005.
    [20] S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, T. Numata, K. Usuda, Y. Moriyama, S. Nakaharaifs, J. Koga, A. Tanabe, N. Hirashita and T. Maeda, “Channel Structure Design, Fabrication and Carrier Transport Properties of Strained-Si/SiGe-on-Insulator (strained-SOI) MOSFETs”, Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International, pp.3.3.1-3.3.4, 2003.
    [21] T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of Strained Si on an Ultrathin SiGe-on-Insulator Virtual Substrate with a High-Ge Fraction”, Applied Physics Letters, Vol. 79, No. 12, pp. 1798-1800, 2001.
    [22] M. T. Currie, T. A. Langdo , G. Taraschi , E. A. Fitzgerald and D. A. Antoniadis, “Carrier Mobilities and Process Stability of Strained Si n- and p-MOSFETs on SiGe Virtual Substrates”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 19, No. 6, pp. 2268-2279, 2001.
    [23] H.-M. Chen, J.-R. Hwang, Y. Li and F. L. Yang, “Novel Strained CMOS Devices with STI Stress Buffer Layers”, VLSI Technology, Systems and Applications, 2007. VLSI-TSA 2007. International Symposium on, pp. 1-2, 2007.
    [24] S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon”, IEEE Transactions on Electron Device, Vol. 51, No. 11, pp. 1790-1797, 2004.
    [25] C.-W. Liu S. Maikop and C.-Y. Yu, “Mobility-Enhancement Technologies”, Circuits and Devices Magazine, IEEE, Vol. 21, No. 3, pp. 21-36, 2005.
    [26] M.-C. Wang, H.-C. Yang, W.-S. Liao, H.-Y. Yang, Y.-Y. Hoe, K.-H. Lin and S.-Y. Chen, “CESL Deposition Promoting nip MOSFETs under 45-nm-node Process Fabrication”, Next-Generation Electronics (ISNE), 2010 International Symposium on, pp. 17-20, 2010.
    [27] S. Orain, V. Fiori, D. Villanueva, A. Dray and C. Ortolland, “Method for Managing the Stress Due to the Strained Nitride Capping Layer in MOS Transistors”, IEEE Transactions on Electron Device, Vol. 54, No. 4, pp. 814-821, 2005.
    [28] R. C. Hibbeler, “Mechanics of Materials”, Prentice Hall, 2005.
    [29] K.Goto, SSatoh, H.Ohta, S.Fukuta, T.Yamamoto, T.Mori, Y.Tagawa, T.Sakuma, TSaiki, Y.Shimamune, A.Katakami, A.Hatada, H.Morioka, Y.Hayami, Shagaki, K.Kawamura, Y.Kim, H.Kokura, N.Tamura, N.Horiguchi, M.Kojima, T.Sugii and K.Hashimoto, “Technology Booster using Strain-Enhancing Laminated SiN (SELS) for 65nm node HP MPUs”, Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 209- 212, 2004.
    [30] K.-J. Chui, K.-W. Ang, N. Balasubramanian, M.-F. Li, G. S. Samudra and Y.-C. Yeo, “n-MOSFET With Silicon–Carbon Source/Drain for Enhancement of Carrier Transport”, IEEE Transactions on Electron Devices, Vol. 54, No. 2, pp.249-256, 2007.
    [31] W.-S. Liao, Y.-G. Liaw, M.-C. Tang, K.-M. Chen, S.-Y. Huang, C.-Y. Peng, C.-W. Liu, “PMOS Hole Mobility Enhancement Through SiGe Conductive Channel and Highly Compressive ILD-SiNx Stressing Layer”, Electron Device Letters, IEEE, Vol. 29, No. 1, pp. 86 – 88, 2008.
    [32] Y.-C. Yeo, Q. Lu; T.-J. King, C. Hu, T. Kawashima, M. Oishi, S. Mashiro and J. Sakai, “Enhanced Performance in Sub-100 nm CMOSFETs using Strained Epitaxial Silicon-Germanium”, Electron Devices Meeting, 2000. IEDM '00. Technical Digest. International, pp. 753 – 756, 2000.
    [33] S. Ito, H. Namba, T. Hirata, K. Ando, S. Koyama, N. Ikezawa, T. Suzuki, T. Saitoh and T. Horiuchi, “Effect of Mechanical Stress Induced by Etch-stop Nitride: Impact on Deep-submicron Transistor Performance”, Microelectronics Reliability, Vol. 42, No. 2, pp. 201-209, 2002.
    [34] G. Eneman, P. Verheyen, A. D. Keersgieter, M. Jurczak and K. D. Meyer, “Scalability of Stress Induced by Contact-Etch-Stop Layers: A Simulation Study”, IEEE Transactions on Electron Devices, Vol. 54, No. 6, pp. 1446-1453, 2007.
    [35] Saeed Moaveni, “Finite Element Analysis: Theory and Application with Ansys-3rd Edition”, Prentice Hall, 2007.
    [36] 劉晉奇,褚晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
    [37] 康淵,陳信吉, ANSYS入門,全華圖書,2007。

    下載圖示
    QR CODE