簡易檢索 / 詳目顯示

研究生: 劉劭農
Liu, Shau-Nung
論文名稱: 利用I-Line黃光微影之負電容及自我對準鰭型穿隧電晶體試製
Fabrication Processes of negative capacitance Self-Aligned Fin Channel Tunneling FETs uing I-Line Photolithography
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 陡峭次臨界擺幅鰭型電晶體鰭型穿隧型電晶體
英文關鍵詞: steep subthreshold swing, fin-shaped FET, fin-shaped TFET
DOI URL: https://doi.org/10.6345/NTNU202204369
論文種類: 學術論文
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這是實驗並且整合在epi Ge/Si FET加上鐵電閘極介電層HfZrOx的堆疊後,藉由負電容的影響讓電晶體無磁滯效應且次臨界擺幅(SS)< 60mV/dec。半導體和鐵電的電容相匹配,獲得Vt 在正掃及反掃無遲滯效應的結果。分別藉由body factor和模擬的執行,來驗證負電容的效應和透過數值計算的方式來進行Ge厚度的最佳化。
    於本論文認定文獻中之鰭式電晶體(FinFET)為鰭寬小於50奈米,本團隊所製程之鰭寬~60-80nm,故稱鰭型電晶體(Fin-Shaped FET),鰭型的結構有利於閘極的控制能力獲得陡峭的次臨界斜率,第三章研究了兩種鰭線寬的微縮方式,此實驗的目標在於能在六吋的製程中達到理想之耐米鰭線寬度。
    一般鰭型穿隧型電晶體的製程中,會使用兩個獨立的光罩來的定義源極和汲極,再分別離子佈植不同的區域,但這樣會讓源極和汲極間留有一段本質區域,造成能帶到能帶間的穿隧(band-to-band tunneling, BTBT)機率下降,在本研究中製作出奈米鰭線寬使用I-line 黃光製程而非E-beam直寫,利用自對準製程技術(self-alignment process)使得源極和汲極和閘極間無本質區域的方法成功的被驗證。

    關鍵字: 陡峭次臨界擺幅、鰭型電晶體、鰭型穿隧型電晶體

    This is experimental demonstration integrating Ge FETs with ferroelectric HfZrOx gate stack for subthreshold swing (SS) < 60mV/dec and hysteresis-free by negative capacitance (NC) effect. The capacitance of semiconductor and ferroelectricity is matched to obtain the no VT shift for forward and reverse sweeps with hysteresis-free. The body factor and modeling are performed to validate the NC effect and optimize the Ge thickness by numerical calculation, respectively.
    The FinFET with the fin width less than 50nm is as well know. The fin width of this work is ~60-80nm, therefore, we denoted our FET as fin-shaped FET. The small body volume of Fin-shaped is beneficial for well-control by gate to obtain steep threshold slope.The third chapter of this thesis introduces two types of fin width formation by conventional I-line stepper. The goal of this work is the narrow fin width to be achieved by NDL standard 6” process line.
    The conventional process of TFET have to individual mask for source and/or drain with different ion implant (I/I) species, this may lead the space between gate to source/drain, which may lead lower BTBT. In this work, the narrow fin process using all I-line photolithograph stepper without e-beam writer is proposed. The self-aligned I/I process for source/drain and no space between gate to source/drain will be demonstrated.

    Keyword: steep subthreshold swing, fin-shaped FET, fin-shaped TFET.

    目錄 Publication………………………………………………………………………I 中文摘要 ………………………………………………………………………………II Abstract…………………….………………………………………………………III 致謝…………………………………………………………………………………………….V 目錄………………………………………………………………………………………………VI 圖目錄……………………………………………………………………………………..IX 表目錄…………………………………v………………………………………………..XIII 第一章緒論 1-1追求陡峭次臨界擺幅………………………………………………....1 1-2穿隧型場效電晶體的操作原理…………………………………….4 1-3負電容元件的實作文獻……………………………………….……….11 1-4 鰭式電晶體的實作文獻……………………..…………………..13 1-5 各章節簡介………………………………..…………………….………..16 第二章 鍺通道鐵電負電容電晶體 2-1背景簡介………………………………………………………….......……17 2-2鍺通道負電容電晶體製程與設計…………………………………19 2-3閘極介電層選擇………………………………….…......…………22 2-4 先閘極元件之TEM結構分析……………………………………… 23 2-5鍺通道負電容電晶體鐵電特性量測……………………………26 2-6鍺通道負電容電晶體之量測………………………………..……29 2-7鍺通道負電容電晶體之模擬………………………………..……31 2-8鍺通道電負電容電晶體之結論……………………………………33 第三章 鰭型電晶體 3-1傳統金氧半場效電晶體之簡介……………………..…………34 3-2半導體製程進步的關鍵…………………………………………...….36 3-3鰭式場效電晶體 FinFET…………………………..……..…..37 3-4實驗背景….…..……………………..………………………………….….39 3-5 Fin-Shaped FET元件製作流程……………………...………………..…..40 3-6 Fin-Shaped FET之fin線寬微縮方式….…………………….…………..44 3-7利用高解析度超薄光阻作鰭線寬之微縮………………………………...46 3-8 Fin-Shaped FET 之TEM………………….………………………..……..52 3-9 Fin-shaped FET之量測………...……………………………………..…...55 3-10 Fin-shaped FET之結論………...……………………………………..….56 第四章 鰭式穿隧型電晶體 4-1 背景簡介………………………………………..................... 58 4-2自對準鰭型穿隧型電晶體製作流程 …………………………………60 4-3 元件製作之討論…………………………………………………………61 4-4鰭型穿隧電晶體製作流程…………………………………………………63 4-5鰭型穿隧型電晶體之閘極定義及退火…………………………………64 4-6鰭型穿隧型電晶體之量測…………...……………………….……………68 4-7鰭型穿隧型電晶體之結論……………………………...…………………70 第五章結論與未來工作 5-1 綜合討論…………………………………………………………….…71 5-2 未來工作…………………………………………………………………72 參考文獻……………………………………………………………………75 附錄 …………………………………………………………………………78

    參考文獻
    [1] International Technology Roadmap for Semiconductors (ITRS) Roadmap, 2009.
    [2] H.-S. Philip Wang, “Introduction and Overview” in “VLSI Technology Beyond 14 nm Node, ” IEEE IEDM short course, Dec. 4, 2011.
    [3] S. M. Sze, Physics of semiconductor devices, 2nd edition, John Wiley & Sons, Inc., 1981.
    [4] J. Moll, “Physics of Semiconductors” McGraw-Hill, New York, p. 253, 1964.
    [5] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Germanium-Source Tunnel Field Effect Transistors with Record High ION/IOFF, ” in VLSI Symp. Tech. Dig., pp. 178-179, 2009.
    [6] A. Seabaugh, “Tunnel Field-Effect Transistor – Engineer a Better Switch, ” IEEE IEDM short course, Dec. 4, 2011.
    [7] K. Joen, W.-Y. Lop, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J. King Liu, and C. Hu, “Si Tunnel Transistors with a Novel Silicided Source and 46mV/dec Swing, ” in VLSI Symp. Tech. Dig., 2010, pp. 121-122
    [8] A. Villalon, C. Le Royer, M. Casse, D. Cooper, B. Previtali, C. Tabone, J.-M. Hartmann, P, Perreau, P. Rivallin, J.-F. Damlencourt, F. Allain, F. Andrieu, O. Weber, O. Faynot and T. Poiroux, “Strained Tunnel FETs with record ION: First demonstration of ETSOI TFETs with SiGe channel and RSD, ” in VLSI Symp. Tech. Dig., 2012, pp. 49-50.
    [9] M. H. Lee, S. T. Chang, T.-H. Wu, and W.-N. Tseng, “Driving Current Enhancement of Strained Ge (110) p-type Tunnel FETs and Anisotropic Effect, ”IEEE Electron Device Letter, vol. 32, no. 10, pp. 1355-1357, 2011.
    [10] K. Joen, W.-Y. Lop, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J. King Liu, and C. Hu, “Si Tunnel Transistors with a NovelSilicided Source and 46mV/dec Swing, ” in VLSI Symp. Tech. Dig., 2010, pp. 121-122.
    [11] C. Hu, D. Chou, P. Patel, and A. Bowonder, “Green transistor—A VDD scaling path for future low power ICs,” in Proc. Int. Symp. VLSI-TSA,Apr. 2008, pp. 14–15.
    [12] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel Field-Effect-Transistors with Epitaxially Grown Germanium on Silicon, ”IEEE Trans. on Electron Device, vol. 60, no.7, pp. 2423-2427, 2013.
    [13] G. A. Salvatore, D. Bouvet, and A. M. Ionescu, “Demonstration of SubthreholdSwing Smaller Than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 Gate Stack, ”in IEDM Tech. Dig., pp. 167-170, 2008.
    [14] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu, ‘‘Metal-Ferroelectric-Metal-Oxide-Semiconductor Field Effect Transistor withSub-60mV/decade Subthreshold Swing and Internal Voltage Amplification,’’in IEDM Tech. Dig., pp. 395-398, 2010

    [15] S. Salahuddin, and S. Datta,‘‘Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?,’’in IEDM Tech. Dig., pp. 693-696,2008.

    [16] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric Negative Capacitance MOSFET: Capacitance Tuning & Antiferroelectric Operation, ” in IEDM Tech. Dig., pp. 255-258, 2011.
    [17] M. C. Cheng, C. H. Lin, Y. F. Hou, Y. J. Chen, C. Y. Lin, F. K. Hsueh, H. L. Liu, C. T. Liu, B. W. Wang, H. C. Chen, C. C. Chen, S. H. Chen, C. T. Wu, T. Y. Lai, M. Y. Lee, B. W. Wu,C. S. Wu, I Yang, Y. P. Hsieh, C. H. Ho, T. Wang, Angada B. Sachid, Chenming Hu , and F. L. Yang, “A 10nm Si-based Bulk FinFETs 6T SRAM with Multiple Fin Heights Technology for 25% Better Noise Margin ’’ in VLSI Symp. Tech. Dig., T219, 2013.
    [18] M. H. Lee*, S. T. Chang*, S. Maikap, C.-Y. Peng, and C.-H. Lee, “High Ge Content of SiGe Channel p-MOSFETs on Si (110) Surfaces, ” IEEE Electron Device Letter, vol. 31, no. 2, pp. 141- 143, 2010.
    [19] M. H. Lee, Y.-T. Wei, K.-Y. Chu, J.-J. Huang, C.-W. Chen, C.-C.Cheng, M.-J. Chen, H.-Y. Lee, Y.-S. Chen, L.-H. Lee, and M.-J. Tsai, “Steep Slope and Near Non-Hysteresis of FETs with
    Antiferroelectric-like HfZrO2 for Low Power Electronics, ” IEEE Electron Device Letter, vol. 36, no. 4, pp. 294-296, 2015.
    [20] www.hightech.tw
    [21] www.sumitomo-chem.
    [22] http://www.ndl.narl.org.tw/
    [23] http://ssttpro.acesuppliers.com/
    [24] 周涵宇,“利用雙重微影成像法製做多晶矽鰭式場校電晶體元件之特性研究”碩士論文,交通大學,101年,p.36。

    無法下載圖示 本全文未授權公開
    QR CODE