研究生: |
曾子瑋 Tzu-Wei Tseng |
---|---|
論文名稱: |
比較Fused-Core與3 µm、5 µm多孔性靜相材料在毛細管管柱中搭配液相層析串聯式質譜儀於蛋白質體之研究 Comparison of Fused-Core with 3 µm, 5 µm Porous Silica Particles Used in Capillary Columns by LC–MS/MS for Proteomic Study |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 液相層析電噴灑游離串聯質譜 、毛細管填充管柱 、fused-core粒子 |
英文關鍵詞: | LC-ESI-MS/MS, packing capillary column, fused-core particle |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毛細管管柱液相層析搭配電噴灑串聯式質譜儀在蛋白質體學的研究中扮演著非常重要的角色,近來在於HPLC的分離上,fused-core技術的發展替代了3 µm或者更小的填充材料,此技術在快速分離的環境下,仍然保有好的解析度(resolution)以及較低的系統壓力;fused-core粒子特殊的合成方式,相較於全多孔球型粒子可以得到較窄的粒徑散佈,可以較為均勻地填充至管柱當中,降低渦流擴散(eddy diffusion)提升管柱分離效率,較短擴散路徑可以加快靜相間質量傳輸的速率以降低波峰寬度。
在本篇研究中,使用實驗室自製的逆相毛細管管柱分離經胰蛋白酶水解之胜肽,搭配串聯式質譜儀(Q-TOF)分析;研究管柱長度以及填充材料粒徑對於分離的影響,三種不同粒徑大小的填充材料3 µm、5 µm porous C18與 2.7 µm fused-core分別填充至毛細管管柱中(75 µm x 50 mm, 75 µm x 100 mm, and 75 µm x 200 mm),分別以BSA與RAW 264.7 secretome 樣品所水解的胜肽來進行測試,在蛋白質鑑定中每個管柱皆使用三種不同液相層析的梯度進行分析。
由實驗結果顯示,fused-core相較於3 µm和5 µm填充管柱提供了較佳的分離效率,在相同的長度與梯度環境下,鑑定到較多的unique peptides,同時進一步應用於鑑定RAW 264.7 secretome的胜肽及蛋白質鑑定上。
Capillary liquid chromatography coupled with electrospray tandem mass spectrometry(LC-ESI-MS/MS)plays an important role in proteome analysis by means of shotgun proteomics. More recently, a fused-core technology is developed as an alternative of 3 µm or smaller particle packing for HPLC separation. It enables faster separation with sufficiently high resolution with lower system pressure. Fused-core particles are more narrow size distributions than fully porous particles, and consisting of thick porous shell. The conception is that a packing particle with a narrow particle size distribution allows a more homogeneous packing, which reduces the eddy diffusion contribution to band broadening and thus improves the separation efficiency of the column. Thick porous shell also provides better mass transfer for phase partitioning, especially for large molecules.
In this study, lab-made reversed-phase capillary columns were used for separation of protein digest with tandem MS(Q-TOF)analysis. The effects of column length and particle size on the efficiency of separation were investigated. Three different lengths of 3 µm、5 µm solid porous C18 and 2.7 µm fused-core columns(75 µm x 50 mm, 75 µm x 100 mm, and 75 µm x 200 mm)were tested using tryptic peptides, which generated from BSA and RAW 264.7 secretome protein. Three different gradient conditions were also applied for protein identification on each column. A column packing with 2.7 µm fused-core particles was investigated and it is found that column with fused-core particles packing provided higher efficiency than that with 3 µm and 5 µm porous particles. Also, more unique peptides were identified in the same column length with identical gradient condition. It was further applied for peptide/protein identification on RAW 264.7 secretome study.
1. Abrahim, A., et al., Practical comparison of 2.7 microm fused-core silica particles and porous sub-2 microm particles for fast separations in pharmaceutical process development. J Pharm Biomed Anal, 2010. 51(1): p. 131-7.
2. Yang, P., et al., Separation of natural product using columns packed with Fused-Core particles. J Sep Sci, 2009. 32(11): p. 1816-22.
3. Chirita, R.I., A.L. Finaru, and C. Elfakir, Evaluation of fused-core and monolithic versus porous silica-based C18 columns and porous graphitic carbon for ion-pairing liquid chromatography analysis of catecholamines and related compounds. J Chromatogr B Analyt Technol Biomed Life Sci, 2011. 879(9-10): p. 633-40.
4. Chocholous, P., et al., Enhanced capabilities of separation in Sequential Injection Chromatography--fused-core particle column and its comparison with narrow-bore monolithic column. Talanta, 2011. 85(2): p. 1129-34.
5. L. R. Snyder, J.J.K., J. L. Glajch, Practical HPLC MethodDevelopment1997,.
6. Horvath, C.G., B.A. Preiss, and S.R. Lipsky, Fast liquid chromatography: an investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Anal Chem, 1967. 39(12): p. 1422-8.
7. J. J. Kirkland, J.L.G., R. D. Farlee, Synthesis and characterization of highly stable bonded phases for high-performance liquid chromatography column packings. Anal. Chem., 1989: p. 61 (1), pp 2–11.
8. R. J. M. Vervoort, A.J.J.D., H. A. Claessens, C. A. Cramers, and G.J.d. Jong, Optimisation and characterisation of silica-based reversed-phase liquid chromatographic systems for the analysis of basic pharmaceuticals J. Chromatogr. A,, 2000: p. 1-22
9. Curley, R.W., Jr., D.L. Carson, and C.N. Ryzewski, Effect of end-capping of reversed-phase high-performance liquid chromatographic matrices on the analysis of vitamin A and its metabolites. J Chromatogr, 1986. 370(1): p. 188-93.
10. Wang, Y.L., et al., Polymer encapsulation of fine particles by a supercritical antisolvent process. Aiche Journal, 2005. 51(2): p. 440-455.
11. Guo, Z., et al., Polar-copolymerized approach based on horizontal polymerization on silica surface for preparation of polar-modified stationary phases. J Chromatogr A, 2010. 1217(27): p. 4555-60.
12. O'Gara, J.E., et al., Embedded-polar-group bonded phases for high performance liquid chromatography. Lc Gc North America, 2001. 19(6): p. 632-+.
13. Unger, K.K., Becker, N., Roumeliotis, P, Recent developments in the evaluation of chemically bonded silica packings for liquid chromatography. Journal of Chromatography A, 1976. 125(1): p. 115-127.
14. Wu, N., Y. Liu, and M.L. Lee, Sub-2 microm porous and nonporous particles for fast separation in reversed-phase high performance liquid chromatography. J Chromatogr A, 2006. 1131(1-2): p. 142-50.
15. Petersson, P. and M.R. Euerby, Characterisation of RPLC columns packed with porous sub-2 microm particles. J Sep Sci, 2007. 30(13): p. 2012-24.
16. Cunliffe, J.M. and T.D. Maloney, Fused-core particle technology as an alternative to sub-2-microm particles to achieve high separation efficiency with low backpressure. J Sep Sci, 2007. 30(18): p. 3104-9.
17. Cabooter, D., et al., Relationship between the particle size distribution of commercial fully porous and superficially porous high-performance liquid chromatography column packings and their chromatographic performance. J Chromatogr A, 2010. 1217(45): p. 7074-81.
18. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
19. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Ion Spray - a Comparison of Mechanisms and Performance. Anal Chem, 1991. 63(18): p. 1989-1998.
20. Dooley, K.C., Tandem mass spectrometry in the clinical chemistry laboratory. Clin Biochem, 2003. 36(6): p. 471-81.
21. Karas, M. and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 1988. 60(20): p. 2299-301.
22. Nonami, H., et al., beta-Carboline alkaloids as matrices for UV-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in positive and negative ion modes. Analysis of proteins of high molecular mass, and of cyclic and acyclic oligosaccharides. Rapid Commun Mass Spectrom, 1998. 12(6): p. 285-96.
23. Emmett, M.R., et al., Application of micro-electrospray liquid chromatography techniques to FT-ICR MS to enable high-sensitivity biological analysis. J Am Soc Mass Spectrom, 1998. 9(4): p. 333-40.
24. Kocher, T., G. Allmaier, and M. Wilm, Nanoelectrospray-based detection and sequencing of substoichiometric amounts of phosphopeptides in complex mixtures. J Mass Spectrom, 2003. 38(2): p. 131-7.
25. Haniu, M., et al., Direct assignment of disulfide bonds by Edman degradation of selected peptide fragments. Int J Pept Protein Res, 1994. 43(1): p. 81-6.
26. John, H. and W.G. Forssmann, Determination of the disulfide bond pattern of the endogenous and recombinant angiogenesis inhibitor endostatin by mass spectrometry. Rapid Commun Mass Spectrom, 2001. 15(14): p. 1222-8.
27. Borchers, C., et al., Identification of in-gel digested proteins by complementary peptide mass fingerprinting and tandem mass spectrometry data obtained on an electrospray ionization quadrupole time-of-flight mass spectrometer. Anal Chem, 2000. 72(6): p. 1163-8.
28. Yates, J.R., 3rd, et al., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem, 1995. 67(8): p. 1426-36.
29. Fekete, S. and J. Fekete, Fast gradient screening of pharmaceuticals with 5 cm long, narrow bore reversed-phase columns packed with sub-3 mum core-shell and sub-2 mum totally porous particles. Talanta, 2011. 84(2): p. 416-23.
30. Hsieh, Y., C.J. Duncan, and J.M. Brisson, Fused-core silica column high-performance liquid chromatography/tandem mass spectrometric determination of rimonabant in mouse plasma. Anal Chem, 2007. 79(15): p. 5668-73.
31. Zheng, J., et al., Comparison study of porous, fused-core, and monolithic silica-based C18 HPLC columns for Celestoderm-V Ointment analysis. J Pharm Biomed Anal, 2009. 50(5): p. 815-22.
32. Gritti, F., et al., Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance. J Chromatogr A, 2010. 1217(24): p. 3819-43.
33. Schuster, S.A., et al., Fast high performance liquid chromatography separations for proteomic applications using Fused-Core(R) silica particles. J Chromatogr A, 2012. 1228: p. 232-41.