簡易檢索 / 詳目顯示

研究生: 王佾雯
Wang, Yi-Wen
論文名稱: 19 GHz 單邊帶混頻器與可變增益放大器設計
Design of 19-GHz Single-Sideband Mixer and Variable Gain Amplifier
指導教授: 蔡政翰
Tsai, Jeng-Han
口試委員: 楊弘源
Yang, Hong-Yuan
李威璁
Li, Wei-Tsung
蔡政翰
Tsai, Jeng-Han
口試日期: 2023/06/16
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 143
中文關鍵詞: 單邊帶混頻器邊帶抑制度可變增益放大器電流控制架構基極偏壓架構
英文關鍵詞: Single sideband Mixer (SSB Mixer), Sideband Suppression (SBS), Variable Gain Amplifier (VGA), Body-Biased digital Current Steering
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301510
論文種類: 學術論文
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著B5G和6G的發展,衛星通訊逐漸被視為下一世紀重要發展中的一部分,Ka頻段衛星通訊則在17.7-20.2 GHz和27.5-30 GHz。在相位陣列(Phase Array)架構的射頻接收機中,混頻器(Mixer)和可變增益放大器(Variable Gain Amplifier)為重要的元件。隨著互補式金氧半導體製程(CMOS)的進步,相較於其他製程CMOS具有低成本及低功率消耗等優勢。本論文將使用標準65-nm製程,實現19 GHz高邊帶抑制度單邊帶混頻器與19 GHz可變增益放大器。
    第一個電路為19 GHz高邊帶抑制度單邊帶混頻器設計介紹,從混頻器架構、設計參數到模擬量測結果,由單顆混頻器的設計作為基礎,使用被動電阻式環形混頻器架構,能有較好的頻寬特性,且不需要直流功率消耗。再藉由輸入正交訊號,經過I Path混頻器、Q Path混頻器,消除其中一邊頻帶的鏡像訊號,以提高系統靈敏度。該混頻器在LO驅動功率3dBm、閘極偏壓同 V_g 為0.35 V時,轉換增益 -20.3±1.5 dB,在RF頻率13~23 GHz範圍內實現了55.5%的分數頻寬(FBW),並達到大於30 dBc的寬頻邊帶抑制度。此外,在RF頻率從18.5至20.2 GHz和IF頻率從2.8至5.7 GHz的範圍內,混頻器的邊帶抑制度高於55 dBc。輸出1dB壓縮點(OP1dB)為-15.7 dBm,且整個頻帶的隔離度均優於47 dB,晶片面積為0.885×0.8 mm2,且無直流功率消耗。
    第二個電路為19 GHz可變增益放大器,從可變增益放大器架構、設計參數到模擬量測結果,設計上採用Current Steering架構,控制方式為數位控制,本次設計為串接兩級以兼顧雜訊和輸出功率,電晶體類比控制之Current Steering架構來調整增益,使增益可變。除此之外加入Body-Biased架構改善低供應電壓時導致的低可變曾亦範圍問題。低供應電壓和低功耗可變增益放大器。在低供應電壓1V、低功率消耗18mW時,小訊號增益22.38 dB、增益調節範圍9.98 dB,RMS振幅誤差低於0.5 dB,晶片面積為0.825 × 0.55 mm2。

    In this thesis, we implemented a 19 GHz single-sideband mixer and a 19 GHz variable gain amplifier with a standard 65-nm 1P9M CMOS process.
    For the emerging development beyond current 5G and 6G communication systems, satellite communication is considered as an important candidate for the next generation high speed data link. The SSB mixer is an essential component in the transceiver. Besides, Variable gain amplifiers (VGAs) can adjust the amplitude of each transmitter/receiver chain for reducing the side lobes. The single sideband up-conversion mixer can convert IF frequency with LO frequency to the wanted RF frequency.
    The first circuit is a 19 GHz Single-Sideband Mixer. A single sideband (SSB) up-conversion mixer with high sideband suppression (SBS) is presented on 65-nm CMOS technology. Utilizing a high impedance transmission line LO matching network and a 2-stage castle-wall polyphase filter (PPF), the SSB up-conversion mixer achieves high SBS. The measured conversion gain of the mixer is -20.3±1.5 dB from 15 to 31GHz via 3 dBm LO power. The SSB up-conversion mixer achieves broad SBS (>30 dBc) from RF frequency 13 to 23 GHz with the fractional bandwidth (FBW) of 55.5%. In addition, the SBS of the mixer is better than 55 dBc for RF frequencies from 18.5 to 20.2 GHz and IF frequencies from 2.8 to 5.7 GHz. The size of the chip is 885μm × 800μm.
    The second circuit is a 19 GHz VGA on 65-nm CMOS process. A body-biased digital current-steering topology is proposed to enlarge the gain control range (GCR) of the VGA under low supply voltage. The proposed VGA achieves a small-signal gain of 22.38 dB at 19 GHz with a 3-dB gain bandwidth from 15.7 to 23.3 GHz. The measured RMS amplitude error is less than 0.5 dB with a GCR of 9.98 dB at 19 GHz. The dc power consumption is 18mW and the chip size is 825μm×550μm.

    誌謝 i 摘要 ii ABSTRACT iv 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.2.1 19 GHz單邊帶混頻器 3 1.2.2 19 GHz可變增益放大器 5 1.3 研究成果 6 1.4 論文架構 7 第二章 19 GHz高邊帶抑制度單邊帶混頻器 8 2.1 簡介 8 2.2 混頻器原理 8 2.3 混頻器架構 9 2.3.1 被動電阻式環形混頻器(Passive Resistive Ring Mixer) 10 2.3.2 單邊帶混頻器(Single-SideBand Mixer) 11 2.3.3 外差式發射機(Heterodyne Transmitter) 12 2.3.4 同差式發射機(Homodyne Transmitter) 12 2.4 混頻器之設計參數 14 2.4.1 轉換增益/損耗(Conversion Gain/Loss) 14 2.4.2 轉換增益對LO驅動功率 14 2.4.3 邊帶抑制度(Sideband Suppression, SBS) 14 2.4.4 1-dB增益壓縮點(1-dB Gain Compression point, P1dB) 15 2.4.5 三階截斷點(3rd-order Intercept Point, IP3) 15 2.4.6 隔離度(Isolation) 15 2.5 19 GHz高邊帶抑制度單邊帶混頻器設計 16 2.5.1 混頻器電晶體尺寸與偏壓分析選擇 17 2.5.2 RF端匹配網路設計 27 2.5.3 RF端馬相巴倫器(Marchand Blaun)設計 29 2.5.4 威爾京生功率合成器(Wilkinson Power Combiner)設計 32 2.5.5 LO端馬相巴倫器(Marchand Blaun)設計 35 2.5.6 90°耦合器(90° Coupler)設計 38 2.5.7 LO端四相位產生器與高阻抗傳輸線匹配網路 42 2.5.8 二階城牆形多相位濾波器(Polyphaser Filter)設計 55 2.6 19 GHz高邊帶抑制度單邊帶混頻器模擬結果 61 2.7 19 GHz高邊帶抑制度單邊帶混頻器量測結果 70 2.8 結果與討論 82 2.9 總結 87 第三章 19 GH可變增益放大器 89 3.1 簡介 89 3.2 可變增益放大器架構 90 3.2.1 Current Steering 架構 90 3.2.2 數位控制 91 3.2.3 基極偏壓(Body Bias) 92 3.3 可變增益放大器之設計參數 93 3.3.1 散射參數(S Parameter) 93 3.3.2 穩定度 94 3.3.3 可變增益範圍(Gain Control Range,GCR) 94 3.3.4 均方根相位差、均方根振幅誤差(RMS Phase Error, RMS Amplitude Error) 95 3.4 19GHz可變增益放大器設計 95 3.4.1主電路偏壓選擇與電晶體尺寸分析 95 3.4.2Body Biased Current Steering電晶體尺寸設計與偏壓選擇 102 3.4.3匹配網路設計 103 3.4.4旁路電路設計 105 3.5 19GHz可變增益放大器模擬結果 106 3.6 19GHz可變增益放大器量測結果 117 3.7 結果與討論 131 3.8 總結 135 第四章 結論 137 參考文獻 138 自傳 143 學術成就 143

    [1] Radio Regulations Articles, Document ITU Radio Regulations Edition of 2016 (Vol. 1), Sep. 2019.
    [2] C.-W. Kim and S.-G. Lee, "A 5.25-GHz image rejection RF front-end receiver with polyphase filters", IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 302-304, May 2006
    [3] C. C. Meng, D. W. Sung and G. W. Huang, "A 5.2-GHz GaInP/GaAs HBT double-quadrature downconverter with polyphase filters for 40-dB image rejection", IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 59-61, Feb. 2005.
    [4] J.-S. Syu, C.-C. Meng, Y.-H. Teng and H.-Y. Liao, "Large improvement in image rejection of double-quadrature dual-conversion low-IF architectures", IEEE Trans. Microw. Theory Techn., vol. 58, no. 7, pp. 1703-1712, Jul. 2010.
    [5] P. K. Singh, S. Basu, K.-H. Liao and Y.-H. Wang, "Highly integrated Ka-band sub-harmonic image-reject down-converter MMIC", IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 305-307, May 2009.
    [6] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang and H. Wang, " 1024-QAM high image rejection E -band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process ", IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974-3985, Nov. 2013.
    [7] I. Huang et al., "Reviews of High Image Rejection Up and Down Converters for Next-Generation Satellite Applications," 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Melbourne, VIC, Australia, pp. 1-3, 2018.
    [8] A. Vallese, A. Bevilacqua, C. Sandner, M. Tiebout, A. Gerosa and A. Neviani, "Analysis and Design of an Integrated Notch Filter for the Rejection of Interference in UWB Systems," in IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 331-343, Feb. 2009.
    [9] 黃絹容,Ka頻帶升頻混頻器與I/Q調變器設計與實現,國立臺灣師範大學電機工程學系研究所碩士論文,2016年
    [10] 林禎芳,38 GHz可變增益放大器與單邊帶調變混頻器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2019年
    [11] 童義倫,38GHz鏡像抑制混頻器與可變增益放大器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2020年
    [12] 鄭伊佐,38GHz單邊待混頻器與可變增益放大器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2021年
    [13] 林芳銘,3.5 GHz向量合成式相移器與38 GHz鏡像抑制降頻器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2019年
    [14] J.-H. Chen, C.-C. Kuo, Y.-M. Hsin and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18-µm CMOS technology,” 2010 IEEE MTT-S International Microwave Symposium, pp. 784-787, 2010
    [15] F. Zhu, K. Wang and K. Wu, “Design considerations for image-rejection enhancement of quadrature mixers”, IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 216-218, March 2019
    [16] 魏庚生,28 GHz IQ調變器與單邊帶混頻器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2022年
    [17] 何泰廷,毫米波寬頻鏡像訊號抑制接收機設計,國立臺灣師範大學電機工程學系研究所碩士論文,2022年
    [18] M.-H. Wu, J.-H. Tsai and T.-W. Huang, “Ka-band calibration-free high image-rejection up/down mixers with 117% fractional IF bandwidth for SATCOM applications,” IEEE Access, vol. 8, pp. 182133-182145, 2020
    [19] S. Kulkarni, D. Zhao, and P. Reynaert, ‘‘Design of an optimal layout polyphase filter for millimeter-wave quadrature LO generation,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 4, pp. 202–206, Apr. 2013.
    [20] C. W. Byeon, I. S. Song, S. J. Cho, H. Y. Kim, C. Lee and C. S. Park, "A 60 GHz Variable Gain Amplifier with a Low Phase Imbalance in 0.18 μm SiGe BiCMOS Technology," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct 2012.
    [21] J. Xiao, I. Mehr and J. Silva-Martinez, "A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 292-301.
    [22] F. Ellinger, U. Jorges, U. Mayer and R. Eickhoff, "Analysis and Compensation of Phase Variations Versus Gain in Amplifiers Verified by SiGe HBT Cascode RFIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1885-1894, Aug. 2009.
    [23] D. -S. Siao, J. -C. Kao and H. Wang, "A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS," in IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 457-459, July 2014
    [24] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 64-66, Jan. 2018.
    [25] J. -H. Tsai and Y. -T. Chen, "A 27–43 GHz CMOS Body-Biased Digital Current-Steering VgA With 4 Bit and Low Phase Shift," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 2, pp. 196-199, Feb. 2023
    [26] David M. Pozar, Microwave Engineering, 4/e, Wiley, 2011
    [27] Razavi, Behzad, RF Microelectronics, Prentice Hall, 2011
    [28] J.-Y. Su, S.-C. Tseng, C. Meng, P.-Y. Wu, Y.-T. Lee, and G.-W. Huang, “Ka/Ku -band pHEMT Gilbert mixers with polyphase and coupled-line quadrature generators,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1063-1073, May 2009
    [29] C.-Y. Chen, J.-L. Lin and H. Wang, “A 38-GHz high-speed I/Q modulator using weak-inversion biasing modified Gilbert-cell mixer,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 9, pp. 822-824, Sept 2018
    [30] L. de Boer, M. Rodenburg, R. van Dijk, F. E. van Vliet and M. Geurts, "A 10 GHz integrated single sideband upconverter in 0.25 μm BiCMOS technology," 2011 6th European Microwave Integrated Circuit Conference, Manchester, UK, pp. 562-565, 2011.
    [31] B. -W. Min and G. M. Rebeiz, "Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA," IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 272-274, April 2008.
    [32] T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu, and K. Kang, “A 20 ~ 43 GHz VGA with 21.5 dB gain tuning range and low phase variation for 5G communications in 65-nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2019, pp. 71–74.
    [33] J. -H. Tsai and C. -L. Lin, "A 40-GHz 4-Bit Digitally Controlled VGA With Low Phase Variation Using 65-nm CMOS Process," IEEE Microw. Wireless Compon. Lett., vol. 29, no. 11, pp. 729-732, Nov. 2019.
    [34] S. Lee, J. Park, and S. Hong, “A Ka-band phase-compensated variable gain CMOS low-noise amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 2, pp. 131–133, Feb. 2019.
    [35] Y. Yi, D. Zhao and X. You, "A Ka-band CMOS Digital-Controlled Phase-Invariant Variable Gain Amplifier with 4-bit Tuning Range and 0.5-dB Resolution," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 152-155, 2018.
    [36] B. Sadhu, J. F. Bulzacchelli and A. Valdes-Garcia, "A 28GHz SiGe BiCMOS phase invariant VGA," 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 150-153, 2016.
    [37] Jeng-Han Tsai, Jen-Wei Wang, Chung-Han Wu, “A V-band Variable Gain Amplifier with Low Phase Variation using 90 nm CMOS Technology,” Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1946-1949, 2014.
    [38] P. -H. Lo, C. -C. Lin, H. -C. Kuo and H. -R. Chuang, "A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity," 2012 42nd European Microwave Conference, Amsterdam, Netherlands, pp. 858-861, 2012.
    [39] Q. Zhang et al., "A Ka-Band CMOS Phase-Invariant and Ultralow Gain Error Variable Gain Amplifier With Active Cross-Coupling Neutralization and Asymmetric Capacitor Techniques," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 1, pp. 85-100, Jan. 2022.
    [40] C. W. Byeon, J. H. Lee, D. Y. Lee, M. -R. Kim and J. H. Son, "A high linearity, image/LO-rejection I/Q up-conversion mixer for 5G cellular communications," 2015 European Microwave Conference, Paris, France, pp. 1196-1199, 2015.
    [41] S. -M. Li, C. -Y. Kuo and H. -C. Chiu, "A 24GHz sub-harmonically image rejection mixer with various asymmetrical diode pair," 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, pp. 521-524, 2010.
    [42] M. Frounchi, A. Alizadeh, C. T. Coen and J. D. Cressler, "A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5336-5346, Dec. 2018.
    [43] Y. -H. Lin, C. -C. Yeh, H. -H. Hsu, J. -H. Tsai and T. -W. Huang, "A 22 — 40 GHz Wideband Image Rejection Mixer in 0.18 μm CMOS Process," 2019 IEEE Asia-Pacific Microwave Conference, Singapore, pp. 1515-1517, 2019.

    無法下載圖示 電子全文延後公開
    2028/08/14
    QR CODE