簡易檢索 / 詳目顯示

研究生: 邱宏達
論文名稱: 由地面反作用力評估鞋底避震能力
指導教授: 林德嘉
Lin, Der-Chia
相子元
Shiang, Tzyy-Yuang
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 94
論文種類: 學術論文
相關次數: 點閱:259下載:67
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    過去已有許多的研究以材料及人體測試的方法,探討運動鞋的避震能力,但兩種測試的結果並不一致。本研究試圖由實驗及模式分析的方法,由撞擊期地面反作用力曲線,瞭解兩種測試之間的異同,並藉此改變材料測試的方法,使其更接近實際人體測試的情況。
    本研究針對市售的Nike慢跑鞋進行材料與人體測試。材料測試結果顯示,撞擊的能量增加,垂直地面反作用力的最大負荷率及傳導至撞擊器的慣性力峰值會隨著增加,且在能量大於5焦耳時,鞋底的避震效果明顯降低。人體測試所測得著地初期垂直地面反作用力曲線,與材料測試所得的曲線相近,但人體測試的撞擊力峰值較高,因此材料測試可評估人體實際跑步時所受地面反作用力的最大負荷率。模式分析結果可說明人體測試中測得較高的撞擊力峰值,應與撞擊過程中有效質量的增加有關。赤腳跑時,四位受試者著地瞬間膝關節較彎曲、角速度較大,小腿縱軸較垂直地面,足底與地面夾角較小,且足跟水平速度也較小,此顯示赤腳時受試者為避免足底承受過大的壓力及撞擊負荷,因而改變著地的策略。
    若以最大負荷率來評估鞋底避震的效果,則由兩種測試的結果比較可計算出實際跑步時的撞擊能量,本研究四位受試者的跑步速度控制在3 m/sec,推算出撞擊能量約在3~7焦耳。因此,若能改變材料測試中撞擊器重量與撞擊高度的範圍,使其與實際跑步的撞擊能量相近,如此即可快速得知慢跑鞋在不同撞擊能量下避震特性的改變,並可評估實際慢跑所測得最大負荷率的範圍。本研究的方法與結果,可提供作為國內對慢跑鞋避震功能材料測試標準訂定之依據。

    關鍵詞:慢跑鞋、避震、地面反作用力、材料測試、模式分析

    ABSTRACT
    Two methods have been carried out to evaluate the cushioned properties of running shoes: material and subject test. However, there are conflicts between the two tests. The purpose of this study is to investigate the differences and similarities between the two tests using ground reaction force (GRF), then try to change the approach of the material test to fit the actual running situation.
    A commercial running shoe was tested in this study. The result of the material test showed that increasing impact energy would get the larger maximum loading rate and inertial peak force and the cushioned property of the shoe would be reduced significantly when the impact energy was over 5 joule. The curves of vertical GRF during the initial impact phase in subject test were similar to the results of material test. Thus, the material test could evaluate the maximum loading rate of the vertical GRF as actual running. Modeling analysis, used in this study, indicated that because the effective mass added into the impact phase there was a larger impact peak force occurring in the subject test. In barefoot running, the larger knee flexion and angular velocity, more vertical position of the shank, flatter foot placement and smaller horizontal heel velocity in the landing instant were the adaptation strategies of the subjects to reduce the plantar pressure under the heel and the impact loading.
    With the comparison of the material and subject test, the impact energy during actual running could be evaluated correctly. The impact energy of the four subjects running with 3m/sec in this study were 3~7 joule. Therefore, if change the impact weight and the impact height of the striker into adequate region that similar to the actual running situation, the maximum loading rate of the vertical GRF during running could be evaluated faster with material test. This study was able to establish the standard for material test to evaluate the cushioned properties of the running shoes.

    Key words: Running Shoe, Cushion, Ground Reaction Force, Material Test, Modeling Analysis

    目 次 章 節 內 容 頁次 授權書 --------------------------------------------------------------- I 口試委員與所長簽字證明 ------------------------------------------ II 中文摘要--------------------------------------------------------------- III 英文摘要--------------------------------------------------------------- IV 謝誌 ---------------------------------------------------------------- V 目次 ---------------------------------------------------------------- VI 表次 ---------------------------------------------------------------- VIII 圖次 ---------------------------------------------------------------- X 第一章 緒 論 ---------------------------------------------- 01 一、 問題背景 ------------------------------------------- 01 二、 研究問題 ------------------------------------------- 05 三、 研究假設與範圍 ---------------------------------- 06 四、 名詞解釋 ------------------------------------------- 06 五、 研究目的及重要性 ------------------------------- 08 第二章 文獻探討 ---------------------------------------------- 09 一、 材料測試 ------------------------------------------- 10 二、 人體測試 ------------------------------------------- 14 三、 材料與人體測試的比較 ------------------------- 19 四、 總結 ------------------------------------------------- 27 第三章 方 法 ---------------------------------------------- 28 一、 材料測試 ------------------------------------------- 28 二、 人體測試 ------------------------------------------- 30 三、 模式分析--------------------------------------------- 35 第四章 結 果 ---------------------------------------------- 37 一、 材料測試 -------------------------------------------- 37 二、 人體測試 -------------------------------------------- 41 三、 撞擊能量及有效質量之評估 ------------------- 50 四、 模式分析--------------------------------------------- 53 第五章 討論與結論 ------------------------------------------- 57 一、 材料測試 ------------------------------------------- 57 二、 人體測試 ------------------------------------------- 61 三、 模式分析 ------------------------------------------- 66 四、 慢跑時地面反作用力的撞擊曲線 -------------- 67 五、 材料測試標準之訂定 ----------------------------- 71 六、 結論 -------------------------------------------------- 73 七、 未來研究方向與建議 ----------------------------- 74 第五章 參考文獻 ----------------------------------------------- 76 附錄一 材料測試中不同撞擊能量下各參數測量結果------ 81 附錄二 人體測試中動力學及運動學參數測量結果----- 83 附錄三 攝影機取樣頻率對測量慢跑著地瞬間運動學參數 之影響 ------------------------------------------------- 87 附錄四 受試者同意書 ---------------------------------------- 93 附錄五 受試者基本資料表 ---------------------------------- 94 表 次 表一:受試者的基本資料 ------------------------------------------- 30 表二:自備鞋的基本資料 ------------------------------------------- 30 表三:不同穿鞋情況下撞擊力峰值及平均負荷率--------------- 43 表四:不同穿鞋情況下最大負荷率及其發生時間 ------------- 43 表五:不同穿鞋情況下著地瞬間膝關節角度及角速度 ------- 49 表六:不同穿鞋情況下著地瞬間小腿及足底與地面的夾角--- 49 表七:不同穿鞋情況下著地瞬間足後跟的垂直及水平速度--- 50 表八:四位受試者穿實驗鞋慢跑時撞擊能量及有效質量估計值 -------------------------------------------------------------------- 52 表九:兩種模擬中使用參數及結果的比較 --------------------- 54 表十:鞋底避震能力材料測試相關研究測試方法比較表---- 59 表十一:鞋底避震能力材料測試相關研究之結果比較表 ---- 60 表十二:四位受試者穿實驗鞋及赤腳時的撞擊速度 ---------- 65 表十三:De Wit等人實驗結果推算穿鞋及赤腳時的撞擊速度- 65 附錄表1:材料測試中實驗鞋在不同能量的撞擊下所測得各參數平均值及標準差 ------------------------------------------- 81 附錄表2:四位受試者動力學及運動學參數的平均值及標準差 -------------------------------------------------------------- 83 附錄表3-1:不同攝影頻率所測得穿鞋跑著地瞬間運動學參數比較------------------------------------------------------------- 89 附錄表3-2:De Wit等人與本研究所測得著地瞬間運動學參數比較------------------------------------------------------------- 92 圖 次 圖一:慢跑時足部所受的地面反作用力圖形 ------------------ 07 圖二:可攜式避震反彈測試儀 ------------------------------------ 29 圖三:實驗場地及儀器佈置簡圖 --------------------------------- 31 圖四:下肢各運動學參數定義圖 --------------------------------- 33 圖五:一維質量-彈簧-阻尼器模型及其自由體圖 ----------- 35 圖六:材料測試中最大負荷率與撞擊力峰值的關係圖 ----- 38 圖七:材料測試中不同撞擊能量下的最大負荷率值 --------- 38 圖八:不同撞擊器重量與撞擊高度所測得最大負荷率 ----- 39 圖九:不同撞擊器重量與撞擊高度所測得加速度峰值 ------ 40 圖十:材料測試中最大負荷率與慣性力峰值的關係圖 ------ 41 圖十一:第一位受試者在不同穿鞋情況下的垂直方向地面反作用力與時間關係圖 --------------------------------------------- 44 圖十二:第二位受試者在不同穿鞋情況下的垂直方向地面反作用力與時間關係圖 --------------------------------------------- 45 圖十三:第三位受試者在不同穿鞋情況下的垂直方向地面反作用力與時間關係圖 --------------------------------------------- 46 圖十四:第四位受試者在不同穿鞋情況下的垂直方向地面反作用力與時間關係圖 --------------------------------------------- 47 圖十五:材料測試與人體測試之比較 --------------------------- 51 圖十六:撞擊速度的計算方式示意圖 --------------------------- 53 圖十七:模式分析與材料測試的比較 --------------------------- 55 圖十八:減速的過程中改變質量大小對模擬撞擊力曲線的影響 ---------------------------------------------------------------- 55 圖十九:減速的過程中將質量增為16.5kg後所得的模擬值與人體測試結果的比較 --------------------------------------------- 56 圖二十:軟、硬兩種表面的模擬值 ------------------------------- 56

    邱宏達、相子元、楊文賓(民87a),不同專項運動鞋之靜態材料分析。師大體育,第四期,109-120。

    邱宏達、相子元、楊文賓(民87b),鞋底避震反彈之人體及材料功能測試。中華醫學工程期刊,第十八卷第三期,161-167。

    相子元(民87),運動鞋與人體生物力學之研究計劃報告書。經濟部科技專案研究。

    Aerts, P. and De Clercq, D. (1993) Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness. Journal of Sports Science, 11, 449-461.

    American Society of Testing and Materials (ASTM). (1994). Standard definitions of terms relating to athletic shoes and biomechanics ( Section 15, Vol.15.07, F869-86, p.440 ).

    Andreasson, G. and Peterson, L. (1986) Effect of shoe and surface characteristics on lower limb injuries in sports. International Journal of Sport Biomechanics, 2, 202-209.

    Bates, B.T.(1989) Comment on ‘The influence of running velocity and midsole hardness on external impact forces in heel-toe running’. Journal of Biomechanics, 22(8/9), 963-965.

    Bobbert, M.F., Yeadon, M.R. and Nigg, B.M. (1992) Mechanical analysis of the landing phase in heel-toe running. Journal of Biomechnics, 25(3), 223-234.

    Cavanagh, P. R. and Lafortune, M. A.(1980) Ground reaction forces in distance running. Journal of Biomechanics, 13, 397-406.

    De Clercq, D. and De Wit, B. (1999) Differences in initial kinematic conditions between shod and barefoot running. In Book of Abstracts of International Society of Biomechanics 17th Congress (pp.763), Calgary, Canada.

    De Clercq, D., Aerts, P. and Kunnen, M. (1994) The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study. Journal of Biomechanics, 27(10), 1213-1222.

    De Wit B., De Clercq, D. and Aerts, P. (2000) Biomechanical analysis of the stance phase during barefoot and shod running. Journal of Biomechanics, 33, 269-278.

    De Wit, B., De Clercq, D. and Lenoir, M. (1995) The effect of varying midsole hardness on impact forces and foot motion during foot contact in running. Journal of Applied Biomechanics, 11, 395-406.

    Denoth, J.(1986) Load on the locomotor system and modeling. In B. M. Nigg(Ed.), Biomechanics of Running Shoes (pp.63-116). Human Kinetics Publishers, Inc. Champaign, IL.

    Foti, T. and Hamill, J. (1993) Shoe cushioning effects on vertical ground reaction force during running. Journal of. Biomechanics, 27(6), 665.

    Frederick, E.C.; Clarke, T.E. and Hamill, C.L.(1984) The effect of running shoe design on shock attenuation. In E. C. Frederick (Ed.), Sports Shoes and Playing Surfaces(pp.190-198), Human Kinetics Publishers, Inc. Champaign, IL.

    Gerritsen, K.G.M., van den Bogert, A.J. and Nigg, B.M. (1995) Direct dynamics simulation of the impact phase in heel-toe running. Journal of Biomechanics, 20(6), 661-668.

    Henning, E.M., Valiant, G.A. and Liu, Q. (1996) Biomechanical variables and the perception of cushioning for running in various types of footwear. Journal of Applied Biomechanics, 12, 143-150.

    Hennig, E.M. and Lafortune, M.A. (1991) Relationship between ground reaction force and tibial bone acceleration parameters. International Journal.of Sport Biomechanics, 7, 303-309.

    Hennig, E.M., Milani, T.L and Lafortune, M.A. (1993) Use of ground reaction force parameters in predicting peak tibial accelerations in running. Journal of Applied Biomechanics, 9, 306-314.

    Jorgensen, U. and Bojsen-Moller, F. (1989) Shock absorbency of factors in the shoe-heel interaction-with special focus on role of the heel pad. Foot & Ankle, 9, 294-299.

    Kaelin, X., Denoth, J., Stacoff, A. and Stussi, E. (1985) Cushioning during running-material tests contra subject tests. In S. Perren (Ed.) Biomechanics: Current Interdisciplinary Research, 2, (pp. 651-656), Martinus nijhoff publisher.

    Kinoshita, H., Francis, P.R., Murase, T., Kawai, S. and Ogawa (1996) The mechanical properties of the heel pad in elderly adults. European. Journal. of Applied Physiology, 73, 404-409.

    Kinoshita, H., Ogawa, T., Kuzuhara, K. and Ikuta, K. (1993) In vivo examination of the dynamic properties of the human heel pad. International Journal.of Sports Medicine, 14(6), 312-319.

    Lafortune, M.A., Hennnig, E.M. and Lake, M.J. (1996) Dominant role of interface over knee angle for cushioning impact loading and regulation initial leg stiffness. Journal of Biomechanics, 29(12), 1523-1529.

    Lafortune, M.A. and Lake, M.J. (1995) Human pendulum approach to simulate and quantify locomotor impact loading. Journal of Biomechanics, 28(9), 1111-1114.

    Liu, W. and Nigg, B.M. (2000) A mechanical model to determine the influence of masses and mass distribution on the impact force during running. Journal of Biomechanics, 39,219-224.

    McNair, P.J and Marshall, R.N. (1994) Kinematic and kinetic parameters associated with running in different shoes. British Journal of Sports Medicine, 28(4),256-260.

    Munro, C.F., Miller, D.I. and Fuglevand, A.J.(1987) Ground reaction forces in running: reexamination. Journal of.Biomechanics, 20(2),147-155.

    Nigg, B.M. (1985) Biomechanics, load analysis and sports injuries in the lower extremities. Sport Medicine, 2, 367-379.

    Nigg, B.M.(1986) Experimental techniques used in running shoe research. In B. M. Nigg(Ed.), Biomechanics of Running Shoes (pp.27-61). Human Kinetics Publishers, Inc. Champaign, IL.

    Nigg, B.M., Bahlsen, H.A.(1988) Influence of heel flare and midsole construction on pronation, supination, and impact forces for heel-toe running. International Journal.of Sport Biomechanics. 4, 205-219.

    Nigg, B.M., Bahlsen, H.A., Luethi, S.M. and Stokes, S.(1987) The influence of running velocity and midsole hardness on external impact forces in heel-toe running. Journal of Biomechanics, 20(10), 951-959.

    Nigg, B.M., Cole, G.K. and Bruggemann, G.P. (1995a) Impact forces during heel-toe running. Journal of Applied Biomechanics, 11, 407-432.

    Nigg, B.M. and Liu, W. (1999) The effect of muscle stiffness and damping on simulated impact force peaks during running. Journal of Biomechnics, 32, 849-856.

    Nigg, B.M., Luethi, S., Denoth, J. and Stacoff, A.(1983) Methodological aspect of sport shoe and sport surface analysis. In H. Matsui and K. Kobayashi (Ed.), Biomechanics VIII-B (pp. 1041-1052), Human Kinetics, Champaign, IL.

    SATRA, Footwear Technology Centre, Phsical Test Method Pm142-Falling Mass Shock Absorption Test (1992).

    Snel, J.G., Delleman, N.J., Heerkens, Y.F. and Schenau, G.J. (1985) Shock-absorbing characteristics of running shoes during actual running. In D. Winter, et. al.(Ed.) Biomechanics IX-B (pp. 133-137), Human Kinetics, Champaign, IL.

    Stergiou, N., Bates, B.T. and Davis, H.P. (1993) The effects of midsole hardness on shoe cushioning. Journal of Biomechanics, 26(3), 321.

    Swigart, J.F., Erdman, A.G. and Cain, P.J. (1993) An energy-based method for testing cushioning durability of running shoes. Journal of Applied Biomechanics, 9, 27-46.

    Valiant, G. A. (1990). Transmission and attenuation of heelstrike acceleration. In P.R Cavanagh(Ed.), Biomechanics of Distance Running, Human Kinetics Publishers, Inc. Champaign, IL.

    Winter, D.A. (1990) Biomechanics and motor control of human movement, John Wiely & Sons, Inc. Waterloo, Ontario, Canada. pp 56-57.

    Wright, I.C., Neptune, R.R., van den Bogert, A.J. and Nigg, B.M. (1998) Passive regulation of impact forces in heel-toe running. Clinical Biomechanics, 13, 521-531.

    QR CODE