簡易檢索 / 詳目顯示

研究生: 陳廷睿
Ting-Ruei Chen
論文名稱: 利用FeS2 奈米晶體敏化TiO2光電極在 近紅外光電化學產氫之研究
NIR Photoelectrochemical hydrogen generation using Pyrite FeS2 Nanocrystals sensitized TiO2 photoelectrodes
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 138
中文關鍵詞: 二硫化鐵近紅外光光電化學產氫
英文關鍵詞: Pyrite, NIR, Photoelectrochemical, Hydrogen generation
論文種類: 學術論文
相關次數: 點閱:177下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,利用溶液法合成二硫化鐵奈米晶體 (FeS2 NCs)組裝在二氧化鈦 (TiO2)薄膜表面,作為近紅外光敏化劑應用於光電化學系統 (PEC)進行水分解產氫。研究中先利用溶膠凝膠法製備 TiO2/FTO,並以溶液法合成 FeS2,旋鍍於 TiO2/FTO上,形成 FeS2/TiO2/FTO異質接面光電極。
    實驗中利用近紅外光雷射 (波長=808nm 強度=300mW/cm2 )照射光電極,採用 0.25M Na2S + 0.35M Na2SO3作為電解液。相較於單純 TiO2以及利用硫化鉛 (PbS)、硒化鉻 (CdSe)取代 FeS2之光電極,相較之下, FeS2/TiO2/FTO異質接面光電極對近紅外光有較佳的表現,在外電壓 0.9V vs. RHE時有最佳飽和光電流密度 6 mA/cm2 ,光電流轉換效率為0.86%,其理論產氫速率約為2.5mL/cm2-h。
    最後我們呈現出以地球含量多且非毒性的FeS2結合金屬氧化物所形成的異質接面光電極,在近紅外光下有優異的光電化學產氫之表現,這在利用近紅外光能量產氫技術發展中,是相當重要的一環。

    In this study, we demonstrated the sensitizer of near infrared (NIR) based on solution processable pyrite FeS2 NCs spun onto porous TiO2 films (FeS2/TiO2/FTO film) for Photoelectrochemical (PEC) hydrogen generation. Experimentally, for fabricating a FeS2/TiO2/FTO film, a TiO2/FTO substrate was first prepared by sol-gel method. Then, FeS2 NCs were spun onto TiO2/FTO substrate to form FeS2/TiO2/FTO heterojunction photoanode.
    PEC cell of FeS2/TiO2/FTO film were placed in the electrolyte of 0.25M Na2S and 0.35M Na2SO3 and illuminated under NIR laser (808nm, I0=300mW/cm2). Compared with lead sulfide (PbS), cadmium selenide (CdSe) on TiO2 photoanode, FeS2/TiO2/FTO heterojunction photoanode show a better NIR photoactivity and higher saturation current density (6mA/cm2 at 0.9V vs. RHE). The conversion efficiency of photoelectrochemical cell to hydrogen was 2.64%, leading to 2.5mL/cm2-h.
    In summary, we demonstrated that the earth-abundant and non-toxic FeS2 nanocrystals /metal oxides heterojunction photoanode showed an excellent performance of PEC hydrogen generation under NIR. It’s important step to further improve the overall PEC performance by absorbing light extended to NIR range.

    摘要 I Abstract II 謝誌 IV 總目錄 VI 圖表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 產氫製程 6 1.3 水分解產氫 9 1.3.1 熱裂解產氫 9 1.3.2 可再生能源發電並電解水產氫 11 1.3.3 太陽能光催化及光電化學分解水產氫 13 1.4 光觸媒的介紹 16 1.5 光陽極結構與特性 21 1.5.1 二氧化鈦( TiO2,Titanium dioxide ) 21 1.5.2 二硫化鐵( FeS2 Pyrite) 25 1.6研究動機與目的 32 第二章 原理及文獻回顧 35 2-1 光電化學產氫法(Photoelectrochemical Hydrogen generation) 35 2-1-1 工作電極(Working electrode ,WE) 36 2-1-2 對電極(Counter electrode,CE) 37 2-1-3 參考電極(Reference electrode,RE) 37 2-2光電化學產氫法之原理 38 2-2-1光電化學分解水反應 39 2-2-2 PEC之能帶模擬 42 2-3 PEC中半導體電極之特性 46 2-4 光電極之PEC測量 56 2-4-1 光電流的測量(LSV) 56 2-4-2 光電轉換效率的計算(PCE) 58 2-4-3 單光光電轉換效率(IPCE) 59 2-4-4 定電流產氫測試(Chronoamperometry and hydrogen generation) 61 第三章 儀器設備與藥品 63 3-1儀器設備介紹及基本原理 63 3-1-1 高溫爐(Oven) 63 3-1-2 恆定電位儀(Potentiostat / Galvanostat) 64 3-1-3 銀/氯化銀參考電極 64 3-1-4 氙燈與單光器(Xenon lamp and Monochromator) 66 3-1-6 808nm 單光雷射 68 3-2分析儀器介紹及基本原理 69 3-2-1 X-光繞射分析儀 ( XRD ) 69 3-2.2 穿透式電子顯微鏡 (TEM ) 70 3-2-3 掃瞄式電子顯微鏡 (SEM ) 71 3-2-4 紫外光-可見光-近紅外光吸收光譜儀 (UV-Vis-NIR) 73 3-2-5 拉曼光譜儀 (Raman) 74 3-2-6 傅立葉紅外光譜儀(Fourier transform infrared spectroscopy) 75 3-3 藥品與器材 76 第四章 實驗流程 77 4-1 實驗流程架構 77 4-2 奈米晶體合成原理 78 4-3 奈米晶體合成實驗步驟 79 4-4 二氧化鈦薄膜與光陽極製作步驟 80 4-5 光陽極硫化步驟 81 第五章 實驗結果與討論 83 5-1材料特性分析 83 5-1-1 FeS2奈米晶體特性分析 83 5-1-2 二氧化鈦薄膜特性分析 86 5-2光陽極特性分析 92 5-2-1 TiO2/FeS2光陽極特性分析 92 5-2-2 TiO2/FeS2光陽極經EDT處理特性分析 97 5-2-3 TiO2/FeS2經硫化程序光陽極特性分析 101 5-3 光陽極於光電化學上的測試 108 5-3-1 電解液的配置與光源的選擇 108 5-3-2 PEC系統之配置與設定 110 5-3-3 TiO2/FeS2光陽極在PEC系統上的測試 111 5-3-4 TiO2/FeS2光陽極硫化後在PEC系統上的測試 115 5-4 不同光敏材料之PEC比較 120 5-5 光電極光電能力轉換比較 125 第六章 結論 129 第七章 未來展望 130 第八章 參考文獻 131

    1. NASA. NASA Study Finds World Warmth Edging Ancient Levels.2006; Available from: http://www.nasa.gov/vision/earth/environment/world_warmth.html
    2. J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, International Journal of Hydrogen Energy , 2005,30,521 – 544
    3. Hydrogen Facts Chemical & Physical Properties of Hydrogen http://chemistry.about.com/od/elementfacts/a/hydrogen.htm
    4. How to ensure H2S safety on offshore rigs http://www.drillingcontractor.org/how-to-ensure-h2s-safety-on-offshore-rigs-8267
    5. J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, International Journal of Hydrogen Energy , 2005,30 ,521 – 544
    6. T. Bak, J. Nowotny ,M. Rekas, C.C. Sorrell, International Journal of Hydrogen Energy, 2002, 27991 – 1022
    7. Ajay K. Ray and Antonie A. C. M. Beenackers, American Institute of Chemical Engineers,1988,44,2
    8. US Department of Energy, N.R.E.L., Hydrogen the fuel for the future.
    9. 曲新生、呂錫民、陳發林, 產氫與儲氫技術 The hydrogen
    production and storage technology 2007, Taipei: 五南
    10. A. Steinfeld, International Journal of Hydrogen Energy , 2002,27,611 – 619
    11. H. Ohya,M. Yatabe,M. Aihara, Y. Negishi, T. Takeuchi, International Journal of Hydrogen Energy ,2002 ,27, 369–376
    12. Abraham Kogan, International Journal of Hydrogen Energy , 2000 ,25 1043-1050
    13. James E. Funk, International Journal of Hydrogen Energy , 2001 ,29,185-190
    14. T. Kodama ,Y. Kondoh ,R. Yamamoto ,H. Andou,N. Satou , Solar Energy ,2005,78,623–631
    15. U. Balachandran, T.H. Lee, S. Wang, S.E. Dorris, International Journal of Hydrogen Energy ,2004,29,291 – 296
    16. A.J.Appleby,Nature,1975,253,257-258
    17. J.W. van Groenestijn, J.H.O. Hazewinkel,M. Nienoord, P.J.T. Bussmann, International Journal of Hydrogen Energy,2002,27,1141 – 1147
    18. Nitai Basak ,Debabrata Das, World J Microbiol Biotechnol ,2007, 23,31–42
    19. Electrolysis produces hydrogen http://cafcp.org/stations/howitworks
    20. C. E. THOMAS,B. D. JAMES , F. D. LOMAX, Jr., International Journal of Hydrogen Energy ,1998,23,949-966
    21. Akira Fujishima,Kenichi Honda,Natrue,1972,238,37-38
    22. Yuh-Lang Lee,Ching-Fa Chi, and Shih-Yi Liau, Chem. Mater. 2010, 22, 922–927
    23. T. Bak, J. Nowotny ,M. Rekas, C.C. Sorrell, International Journal of Hydrogen Energy ,2002,27,991 – 1022
    24. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, International Journal of Hydrogen Energy,2007,32,2609 – 2629
    25. Michael Grätzel,Nature,2001,414,338-344
    26. Akihiko Kudo, Yugo Miseki, Chem. Soc. Rev., 2009, 38, 253–278
    27. Ryu Abe, Journal of Photochemistry and Photobiology C , 2010 , 11,179-209
    28. Akihiko Kudo, Hideki Kato, Issei Tsuji, Chemistry Letters , 2004 , 33,1534-1539
    29. Akihiko Kudo,Catalysis Surveys from Asia, 2003,7,31-38
    30. Xiliang Nie, Shuping Zhuo,GloriaMaeng,and Karl Sohlberg, International Journal of Photoenergy,2009,10,1155-1177
    31. Ulrike Diebold,Surface Science Report,2003,48,53-229
    32. 徐國淦,以化學浴沉積法製備 CdS/TiO2光陽極進行光電化學產氫之研究,成功大學,2010
    33. Anders Hagfeldtt , Michael Gratzel, American Chemical Society , 1995,95,49-68
    34. H. Gerischer, and A. Heller, J. Electrochem. Soc.,1992,139, 113-118
    35. K. Connelly A. K. Wahab Hicham Idriss, Mater Renew Sustain Energy,2012,1:3,1-12
    36. Ennaoui, A.; Fiechter, S.; Jaegermann, W.’ Tributsch, H. , J.Electrochem. Soc.,1986 , 133 , 97-106
    37. J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications,1996,98,581-585
    38. A. ENNAOUI and H. TRIBUTSCH, Solar Energy Materials, 1986,14, 461-474
    39. Fahhad Alharbi , John D. Bass , Abdelmajid Salhi , Ahmed Alyamani , Ho-Cheol Kim ,Robert D. Miller , Renewable Energy , 2011, 36 , 2753-2758
    40. Marc Blanchard , Maria Alfredsson , John Brodholt , Kate Wright ,C. Richard A. Catlow , Geochimica et Cosmochimica Acta , 2007, 71 624–630
    41. Jun Hu, Yanning Zhang, Matt Law, and Ruqian Wu, J. Am. Chem. Soc. 2012, 134, 13216−13219
    42. A. Ennaoui, S. Fiechter, Ch. Pettenkofer, N. Alonso-Vante, K. Bilker, M. Bronold, Ch. H6pfner and H. Tributsch, Solar Energy Materials and Solar Cells,1993 ,29,289-370
    43. J. P. Wilcoxon, P. P. Newcomer and G. A. Samara Solid State Communications 1996, 98, 581-654
    44. P. Gao, Yi Xie, L. Ye, Y. Chen, Q. Guo, Crystal Growth & Design 2006, 6, 584.
    45. B. Ouertani, J. Ouerfelli, M. Saadoun, B. BessaRs, H. Ezzaouia, J.C. Bernede Materials Characterization,2005, 54, 431.
    46. S. W. Lehner, K .S. Savage, and J. C. Ayers Journal of Crystal Growth 2006, 286, 306.
    47. Surbhi Choudhary , Sumant Upadhyay , Pushpendra Kumar , Nirupama Singh,Vibha R. Satsangi , Rohit Shrivastav , Sahab Dass , International journal of hydrogen energy,2012,1-18
    48. Jia Hong Pan, X.S. Zhao, , Wan In Lee, Chemical Engineering Journal , 2011,170, 363–380
    49. Samy A. Khalil , A.M. Shaffie , Advances in Space Research , 2013,51,1727-1733
    50. Pietro P. Altermatt, Tobias Kiesewetter, Klaus Ellmer, Helmut Tributsch , Solar Energy Materials & Solar Cells, 2002 , 71,181–195
    51. Cyruswadua , A . Paulalivisatos , Anddanielm . Kammen , Environ. Sci. Technol. 2009, 43, 2072–2077
    52. Michael Grätzel,Nature,2001,414,338-344
    53. J. F. HouIihan , J. R. Hamilton , Materials Research Bulletin 1979,14,915-920
    54. Shahed U. M. Khan, Mofareh Al-Shahry, William B. Ingler Jr, Science,2002, 297, 2243-2245
    55. M. Radecka, M. Wierzbicka, S. Komornicki, M. Rekas, Physica B 2004 , 348,160–168
    56. Quan X,Yang S,Ruan X,Zhao H, Environ. Sci. Technol ,2005, 39, 3770-3775
    57. Karthik Shankar, Gopal K Mor, Haripriya E Prakasam, Sorachon Yoriya, Maggie Paulose, Oomman K Vargheseand Craig A Grimes , Nanotechnology, 2007, 18 ,065707
    58. Kazuhiko Maeda , Kazunari Domen , J. Phys. Chem. C , 2007, 111, 7851-7861
    59. Adrian W. Bott, Current Separations , 1998 , 17:3 ,87-91
    60. Arthur J. Nozik, Ru1diger Memming, J. Phys. Chem. 1996, 100, 13061-13078
    61. Allen J. Bard Larry R. Faulkner,ELECTROCHEMICAL METHODS Fundamentals and Applications , 2nd,WILEY
    62. Roel van de Krol , Michael GratzelPhotoelectrochemical Hydrogen Production (Electronic Materials: Science & Technology),2nd, WILEY
    63. Yu. V. Pleskov, Solar Energy Conversion. A Photoelectrochemical approach,Springer Berlin, 1990.
    64. Dinghua Bao, Heqing Yang, Liangying Zhang, and Xi Yao, Phys. stat. sol,1998,169,227-233
    65. J. G. Mavroides, J. A. Kafalas, and D. F. Kolesar, Applied Physics Letters, 1976, 28, 241-243,
    66. K. H. Yoon, and T. H. Kim, Journal of Solid State Chemistry, 1987, 67, 359-363,
    67. J. H. Kennedy, and K. W. Frese, Journal of the Electrochemical Society, 1976 ,123, 1683-1686
    68. Gary Hodes,David Cahen , Joost Mananssen , Nature , 1976,260, 312 – 313
    69. S. Licht, B. Wang, S. Mukerji, T. Soga , M. Umeno, H. Tributsch, J. Phys. Chem. B 2000, 104, 8920-8924
    70. Kenneth J. McDonald and Kyoung-Shin Choi, Chem. Mater. 2011, 23, 4863–4869
    71. Diane K. Zhong and Daniel R. Gamelin, J. AM. CHEM. SOC. 2010, 132, 4202–4207
    72. Mutong Niu, Feng Huang, Lifeng Cui, Ping Huang, Yunlong Yu, Yuansheng Wang , ACS Nano,2010,4, 681–688
    73. Yang Hou, Fan Zuo, Alex Dagg, and Pingyun Feng, Nano Lett. 2012, 12, 6464−6473
    74. A. Ennaoui, S. Fiechter, W. Jaegermann , H. Tributsch, J.Electrochem. Soc. 1986 133,97-106
    75. N. Serpone, and E. Pelizzetti, Photocatalysis fundamentals and applications, 1989,WILEY
    76. Minsu Seol, Ji-Wook Jang, Seungho Cho, Jae Sung Lee, Kijung Yong , Chem. Mater.,2013,25, 184–189
    77. Di-Yan Wang , You-Ting Jiang , Chih-Cheng Lin , Shao-Sian Li , Yaw-Tyng Wang , Chia-Chun Chen , Chun-Wei Chen , Adv. Mater. 2012, 24, 3415–3420
    78. J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications , 1996 , 98,581-585
    79. Cyrus Wadia, Yue Wu, Sheraz Gul, Steven K. Volkman, Jinghua Guo, A. Paul Alivisatos, Chem. Mater. 2009, 21, 2568–2570
    80. Bausch, S.; Sailer, B.; Keppner, H.; Willeke, G.; Bucher, E.; Frommeyer, G. Applied Physics Letters 1990, 57, 25.
    81. Jin Joo, Hyon Bin Na, Taekyung Yu, Jung Ho Yu, Young Woon Kim, Fanxin Wu, Jin Z. Zhang, and Taeghwan Hyeon, J. AM. CHEM. SOC. 2003, 125, 11100-11105
    82. W. William Yu and Xiaogang Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371
    83. Xiangying Chen, Zhenghua Wang, Xiong Wang, Junxi Wan, Jianwei Liu, and Yitai Qian, Inorg. Chem. 2005, 44, 951-954
    84. H. Duana, Y.F. Zhenga, Y.Z. Donga, X.G. Zhangb, Y.F. Sun, Materials Research Bulletin , 2004 , 39,1861–1868
    85. Ghada I. Koleilat, Larissa Levina, Harnik Shukla, Stefan H. Myrskog, Sean Hinds, Andras G. Pattantyus-Abraham, and Edward H. Sargent, ACS NANO,2008,2,833-840
    86. Ethan J. Klem, Harnik Shukla, Sean Hinds, Dean D. MacNeil, Larissa Levina et al. APPLIED PHYSICS LETTERS,2008,92, 212105
    87. James Puthussery, Sean Seefeld, Nicholas Berry, Markelle Gibbs, Matt Law , J. Am. Chem. Soc. 2011, 133, 716–719
    88. Yu Bi,Yongbo Yuan, Christopher L. Exstrom,Scott A. Darveau, Jinsong Huang, Nano Lett. 2011, 11, 4953–4957
    89. Nicholas Berry , Ming Cheng , Craig L. Perkins , Moritz Limpinsel , John C. Hemminger , Matt Law, Adv. Energy Mater , 2012 , 2 , 1124-1135

    下載圖示
    QR CODE