簡易檢索 / 詳目顯示

研究生: 駱 雅凡
Ya-Fan Lo
論文名稱: 奈米金氣體感測材料之線性溶合能量關係模型與類場效電晶體測試之研究
Linear Solvation Energy Relationship Model and Quasi-Field Effect Transistor for Gas Sensors Coated with Surface Modified Gold Nanoparticles
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 77
中文關鍵詞: 奈米金感測器線性溶合能量關係模型電晶體
英文關鍵詞: nanogold, sensors, linear solvation energy relationship model, transistors
論文種類: 學術論文
相關次數: 點閱:167下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將奈米金氣體感測材料結合微小化化學感測器(阻抗式化學感測器chemiresistor,CR,以及質量式感測器─石英微量天平quartz crystal microbalance,QCM)所組成的氣體感測系統,量測其阻抗及頻率的變化。所使用的氣體感測材料為四種不同的「單層有機分子膜包覆的奈米金簇 (monolayer protected gold nano-cluster,MPC)」,藉由包覆於奈米金表面分子之官能基不同,探討四種具有不同官能基的氣體感測材料對於十六種有機氣體的吸附靈敏度以及反應機構。實驗結果發現,含長碳鏈的奈米金材料對於氣體的吸附較佳,且對於極性氣體之感測靈敏度,有苯環的感測材料優於含酯基的感測材料。接著,我們利用QCM裝置感測有機氣體的量測結果,將其所求得的氣體吸附平衡常數K (partition coefficient) 與待測氣體之溶劑參數進行多元線性迴歸,分別計算出四種材料的線性溶合能量關係模型 (linear solvation energy relationship model,LSER model),並藉由此模型探討各材料中,氣體吸附平衡常數與各化學作用力之間相關連的程度,實驗結果發現作用力中的極性與氫鍵酸之作用,對於Au-ESTER在吸附氣體時的影響較大,凡德瓦力則是和碳數多的Au-C8與Au-10C較相關;此外,我們將氣體的溶劑參數分別代入四種氣體感測材料的LSER model之中,得到的 值與實驗結果有相同的趨勢,因此此模型可以用來作初步簡易的吸附選擇性預測;最後,嘗試將微小指叉電極改製成類似場效電晶體的構造,塗佈上兩種氣體感測材料Au-TBT和Au-C8,進行電性量測,結果在電壓增加到某個大小後,電流值會陡升,並觀察當輸入閘極電壓進行氣體感測時靈敏度之變化,結果靈敏度是沒有提升的現象。

    In this study, we measured the resistance and frequency changes of CR (chemiresistor) and QCM (quartz crystal microbalance). We synthesized a series of monolayer protected gold nano-cluster (MPC) as the sensing materials that were modified by various moleculars with functional groups, and investigated the sensitivity and the mechanisms of vapor sensing on CR and QCM by detecting 16 volatile organic compounds (VOCs). We found that MPC with long carbon chains have good absorbability to vapors, and those MPC with benzene ring have the better absorbability to polar vapors than those with ester group. The second part of study using multiple linear regression is to obtain linear solvation energy relationship model (LSER model) of four vapor sensing materials by investigating the relationship among the solvent parameters toward the partition coefficient K. The coefficients of LSER models are regarded as the interaction between the vapor sensing materials and the vapors. We discussed the corr- elations between five solvent parameters and partition coefficient K by LSER models. As a result, polarity and acidic hydrogen bonding have significant influence on Au-ESTER. On the other hand, materials such as Au-C8 and Au-10C with long carbon chains are associated with van der Waals’ force. In addition, the value from LSER models and the experimental results showed the similar trend, therefore, the models can be used to predict the selectivity for adsorption of vapors onto materials at. Finally, we measured the conductivity and sensitiv- ity of quasi-FET (field effect transistor) coated with Au-TBT and Au-C8 when applied specific gate voltages on them. The sensitivities showed no improvement but increasing in current when the applied voltage is large enough.

    中文摘要 i Abstract ii 謝誌 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 奈米材料的介紹 4 1-3-1 奈米材料的起源與定義 4 1-3-2 奈米材料的特性 4 1-3-3 自組分子薄膜 (self assembled monolayer,SAM) 6 1-3-4 奈米金之兩相合成法 8 1-3-5 奈米的量測工具 10 1-4 化學感測器之介紹 12 1-4-1 石英微量天平 (quartz crystal microbalance,QCM) 12 1-4-2 阻抗式化學感測器 (chemiresistor,CR) 14 1-5 電晶體 (transistor) 18 1-5-1 電晶體的由來 18 1-5-2 雙極性電晶體 18 1-5-3 場效電晶體 19 1-6迴歸分析 (regression analysis) 21 第二章 實驗器材與方法 26 2-1 實驗藥品和實驗儀器設備 26 2-1-1 實驗藥品 26 2-1-2 實驗儀器設備 27 2-2 實驗流程 30 2-3 奈米金粒子合成方法 31 2-4 前處理及類場效電晶體之製作與實驗量測 35 2-5 材料塗佈 36 2-6 有機氣體感測 37 第三章 結果與討論 39 3-1 奈米金粒子之UV-Vis光譜鑑定與TEM量測之結果 39 3-2 石英微量天平與阻抗式化學感測器之有機氣體感測 40 3-2-1 QCM與CR之氣體感測反應訊號圖 40 3-2-2 QCM對16種氣體感測之靈敏度 43 3-2-3 CR對16種氣體感測之靈敏度 50 3-2-4 四種MPC材料之QCM與CR量測結果的比較 55 3-3 線性溶合能量關係模型 58 3-3-1 十五種氣體之LSER model 58 3-3-1.1 LSER model 之建立 58 3-3-1.2 LSER model之氣體吸附性預測 61 3-3-1.3 QCM量測與LSER model所求得之 值的比較 63 3-3-2 八種氣體之LSER model 64 3-3-2.1 LSER model之建立 64 3-3-2.2 QCM量測與LSER model所求得之 值的比較 65 3-3-2.3 十五種與八種氣體之LSER model的比較 67 3-4 MPC結合類場效電晶體之測試 68 3-4-1 兩種MPC材料之類場效電晶體性質量測 68 3-4-2 兩種MPC材料之類場效電晶體對有機氣體 (m-xylene) 感測訊號圖 70 3-4-3 兩種MPC材料之類場效電晶體對有機氣體 (m-xylene) 感測靈敏度 72 第四章 結論 73 第五章 參考文獻 75

    [1] 勞倫斯‧克勞斯。量子先生:費曼的科學人生。嚴麗娟譯。台灣:博雅書屋。2012。
    [2] 國科會精密儀器中心。微機電系統技術與應用。台灣:全華圖書。2005。
    [3] 襲建華、羅煥耿。你不可不知的奈米科技。台灣:世茂出版有限公司。2006。
    [4] Rao, C. N. R., Kulkarni, G. U., Thomas, P. J., Edwards, P. P. Chem. Soc. Rev. 2000, 29, 27-35.
    [5] Brust, M., Walker, M., Bethell, D., Schiffrin, D., Whyman, R. J. J. Chem. Soc. Chem. Commun. 1994, 801-802.
    [6] Zhang, P., Sham, T. K. Appl. Phys. Lett. 2002, 81, 736-738.
    [7] Zamborini, F. K. Hicks, J. F., Murray, R. W. J. Am. Chem. Soc. 2000, 122, 4514-4515.
    [8] Saunders, A. E., Sigman, M. B. Korgel, B. A. J. Phys. Chem. B. 2004, 108, 193-199.
    [9] Grate, J. W., Kaganove, S. N., Bhethanabotla, V. R. Faraday Discuss. 1997, 107, 259-283.
    [10] Grate J. W., Nelso D. A., Skaggs R. Anal. Chem. 2003, 75, 1868-1879.
    [11] Hierlemann, A., Zellers, E. T., Ricco, A. J. Anal. Chem. 2001, 73, 3458-3466.
    [12] Abraham, M. H. Chem.Soc. Rev. 1993, 22, 73-78.
    [13] 柯麗霞、陳正達、王崇人,奈米科技的早期發展歷史,The Chinese Chem. Soc., TAIPEI
      2004, 62, 4, 569-578.
    [14] 馬遠榮。奈米科技。台灣:商周出版。2002.
    [15] 尹邦耀。奈米時代。台北;五南圖書出版股份有限公司。2002。
    [16] 陳燕華,神奇的奈米磁鐵礦,科學發展,482期,18-23,2013。
    [17] Pollack, H. W. Materials science and metallurgy, 4th Edition, Englewood Cliffs N. J.
      Prentice-Hall, 1988.
    [18] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y. Science. 2001, 293, 269-271.
    [19] Ulman, A. Chem. Rev. 1996, 96, 1533-1554.
    [20] Langmuir, I. Trans. Faraday Soc., 1920, 15, 62-74.
    [21] Bigelow, W. C., Pickett, D. L., Zisman W. A., J. Colloid Interface Sci., 1946, 13,
      513-538. 
    [22] Sagiv, J., J. Am. Chem. Soc., 1980, 102, 92-98.
    [23] Nuzzo, R. G., Allara D. L. J. Am. Chem. Soc., 1983, 105, 4481-4483.
    [24] Xia, Y., Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550-575.
    [25] Turkevich, J., Stevenson, P. C., Hillier, J. Faraday Soc., 1951, 11, 55-74.
    [26] Frens, G. Nature, 1973, 241, 20-22.
    [27] Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., Kiely, C. J. J. Chem. Soc., Chem.
    Commun., 1995, 1655-1656.
    [28] Wang, Z. X., Tan, B., Hussain, I., Schaeffer, N., Wyatt, M. F., Brust, M., Cooper, A. I.
    Langmuir, 2007, 23, 885-895.
    [29] Schaeffer, N., Tan, B., Dickinson, C., Rosseinsky, M. J., Laromaine, A., McComb, D.
    W., Stevens, M. M., Wang, Y., Petit, L., Barentin, C., Spiller, D. G., Cooper, A. I., Levy,     R. Chem.Commun., 2008, 34, 3986-3988.
    [30] Curie, P., Curie, J. C. R. Acad. Sci. 1880, 91, 294-295.
    [31] Sauerbrey, G. Z. Phys. 1959, 155, 206-212.
    [32] Neugebauer, C. A., Webb, M. B. J. App. Phys. 1962, 33, 74-82.
    [33] Evans, S. D., Johnson, S. R., Cheng, Y. L., Shen, T. J. Mater. Chem. 2000, 10, 183-188.
    [34] Wohltjen, H., Snow, A. W. Anal. Chem. 1998, 70, 2856-2859.
    [35] Wuelfing, W., Green, S., Pietron, J., Cliffel, D., Murray, R. J. Am. Chem. Soc. 2000, 122,
    11465-11472.
    [36] Han, L., Daniel, D. R., Maye, M. M., Zhong, C. J. Anal. Chem. 2001, 73, 4441-4449.
    [37] Zamborini, F. P., Leopold, M. C., Hicks, J. F., Kulesza, P. J., Malik, M. A., Murray, R.
    W. J. Am. Chem. Soc. 2002, 124, 8958-8964.
    [38] Krasteva, N., Guse, B., Besnard, I., Yasuda, A., Vossmeyer, T. Sens. Actuators B. 2003,
    92, 137-143.
    [39] Han, L., Shi, X., Wu, W., Kirk, F. L., Luo, J., Wang, L., Mott, D., Cousineau, L., Lim, S.
    I-Im., Lu, S., Zhong, C. J. Sens. Actuators B, 2005, 106, 431-441.
    [40] Shi, X., Wang, L., Kariuki, N., Luo, J., Zhong, C. J., Lu, S. Sens. Actuators B, 2006, 117,
    65-73.
    [41] 莊達人。VLSI製造技術。六版三刷。台灣:高立圖書有限公司。2008。
    [42] Prati, E., Michielis, M. D., Belli, M., Cocco, S., Fanciulli, M., Kotekar-Patil, D., Ruoff,
    M., Kern, D. P., Wharam, D. A., Verduijn, J., Tettamanz, G. C., Rogge, S., Roche, B.,
    Wacquez, R., Jehl, X., Vinet, M., Sanquer, M. Nanotechnology. 2012, 23, 215204.
    [43] Paul, R. K., Badhulika, S., Saucedo, N. M., Mulchandani, A. Anal. Chem. 2012, 84,
    8171-8178.
    [44] 林惠玲、陳正倉。基礎統計學:觀念與應用。第二版。台灣:雙葉書廊有限公司。
    2008。
    [45] 余桂霖。多元迴歸分析。台北:五南圖書出版股份有限公司。2012。
    [46] 李季霖。民國95年7月。奈米金氣體感測材料之線性溶合能量關係模式與圖形辨
    識之研究。輔仁大學化學研究所碩士論文。
    [47] 簡日昇。民國96年7月。奈米金-阻抗式氣體感測器應用於微機電氣相層析偵測
    器之研製。輔仁大學化學研究所碩士論文。
    [48] 蔡佳蓉。民國99年7月。奈米金殼層結構與氣體感應機構之研究。臺灣師範大學
    化學研究所碩士論文。
    [49] 邱俞鈞,民國102年7月。芳香基表面修飾之奈米金粒子與其在氣體感測器之應用。
    臺灣師範大學化學研究所碩士論文。

    下載圖示
    QR CODE