研究生: |
賴鼎富 Lai, Ting-Fu |
---|---|
論文名稱: |
高齡者整體及不同時段的身體活動與功能性體適能表現之關聯性研究 Associations Between Overall and Different Time of Physical Activity and Performances of Functional fitness Performance in Older Adults |
指導教授: |
廖邕
Liao, Yung 李子奇 Lee, Tzu-Chi |
口試委員: |
廖邕
Liao, Yung 李子奇 Lee, Tzu-Chi 詹鼎正 Chan, Ding-Cheng 胡益進 Hu, Yih-Jin 薛名淳 Hsueh, Ming-Chun |
口試日期: | 2023/10/16 |
學位類別: |
博士 Doctor |
系所名稱: |
健康促進與衛生教育學系 Department of Health Promotion and Health Education |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | 高齡者 、身體活動 、功能性體適能 、晝夜節律 、預防失能 |
英文關鍵詞: | older adults, physical activity, functional fitness, circadian rhythm, disability prevention |
研究方法: | 調查研究 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202301787 |
論文種類: | 學術論文 |
相關次數: | 點閱:181 下載:50 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:高齡者在老化的過程中,可能因事故、器官老化或罹患疾病,經歷暫時地或永久地「失能 (Disability)」的風險較高。增進身體活動為過往預防失能的主要手段,高齡者在日常生活中有較多自主運用的時間,可自行決定自己的生活型態,根據人體晝夜規律 (circadian rhythm) 之理論,身體活動的時間點可以作為校正周邊時鐘的校時器 (zeitgeber),然而,目前尚未有研究探討高齡者進行身體活動之合適的時間點對於肌肉功能表現之關聯。
研究目的與方法:本論文將以臺北市居住於社區的高齡者或醫院門診的高齡者作為研究對象,試圖運用三軸加速規 (triaxial accelerometer),來測量其「整體」身體活動量及「不同時段」的身體活動量佔比 (包含:「輕度」與「中高強度」身體活動) ,探討其與高齡者的功能性體適能表現 (包含:「握力」、「基本移動能力」、「走路速度」與「下肢肌力」) 之關聯性。本論文將分為兩個研究,研究一探討「整體」與「不同時段」之輕度及中高強度身體活動和功能性體適能表現之關聯性,研究二,使用「等時替代模型 (Isotemporal substitution analysis)」,進一步探討在「整體」或「特定時段」以三十分鐘的輕度身體活動或中高強度身體活動取代相同時間的靜態行為與功能性體適能之關聯性。
結果:在研究一,整體的每日平均中高強度身體活動與握力表現與起身三公尺行走測試表現有顯著正向相關。在不同時段的分析結果則是發現,下午時段的輕度身體活動百分比與起身三公尺行走測試表現有顯著正相關,而晚上時段的輕強度身體活動百分比與起身三公尺行走測試表現及六公尺步行測試表現有顯著正相關。在研究二,整體時間、下午時段與晚上時段以輕度身體活動取代靜態行為,對於握力、三公尺起走測試、六公尺行走測試表現有正向相關。在整體時間、早上與下午時段以輕度身體活動取代靜態行為,對於五次坐站測試表現有正向相關。在整體時間、早上與下午時段以中高強度身體活動取代靜態行為,對於六公尺行走測試表現有正向相關。
結論:高齡者在整體或特定時段 (特別是早上或下午) 進行身體活動或進行身體活動取代靜態行為確實與功能性體適能表現在有正向相關,未來的健康促進活動或相關衛教策略可以著重在建議高齡者在日常生活或白天時段當中盡量以任何身體活動取代靜態行為以預防肌肉功能下降並預防失能。
Background: In the aging process, older adults are at a heightened risk of experiencing temporary or permanent "disability" due to accidents, organ degeneration, or the onset of diseases. Physical activity has been a primary preventive measure against disability in the past. Given that older adults have more discretionary time in their daily lives, they have the autonomy to dictate their lifestyle. According to the theory of circadian rhythms, the timing of physical activity can serve as a zeitgeber, or time cue, for adjusting peripheral clocks. However, there is currently a lack of research investigating the optimal timing of physical activity in relation to muscle function performance in older adults.
Methods: This study aims to investigate the community-dwelling older adults or older outpatients in Taipei City as the research subjects. Utilizing a triaxial accelerometer, the study measures both the "overall" and "time-specific" proportions of physical activity levels, including "light" and "moderate-to-high intensity" activities. The research explores the association between these activity levels and functional fitness performance in older adults, including "grip strength," "basic mobility," "walking speed," and "lower limb muscle strength." The study is divided into two parts: Study 1 examined the relationship between "overall" and "time-specific" light and moderate-to-high intensity physical activities and functional fitness performance in community-dwelling older adults. Study 2 employed "Isotemporal Substitution Analysis" to further investigate the correlation between replacing the same duration of sedentary behavior with thirty minutes of light or moderate-to-high intensity physical activity, either "overall" or during "specific time periods," and functional fitness performance in older outpatients.
Results: In Study 1, overall moderate-to-high-intensity physical activity was significantly positively correlated with grip strength performance and the TUG test. Upon analyzing different time periods, it was found that the percentage of light physical activity in the afternoon was significantly positively correlated with TUG test performance. Additionally, the percentage of light-to-moderate physical activity in the evening was significantly positively correlated with both TUG test and 6-meter walk test performances. In Study 2, replacing sedentary behavior with light physical activity during overall time, afternoon, and evening periods was positively correlated with grip strength, TUG test, and 6-meter walk test performances. During overall time, morning, and afternoon periods, replacing sedentary behavior with light physical activity was positively correlated with the five times sit-to-stand test performance. Replacing 30 min of sedentary behavior with MVPA during overall time, morning, and afternoon periods was positively associated with 6-Meter Walk Test performance.
Conclusion: Engaging in physical activity, either overall or during specific time periods (during the morning or the afteroon), has indeed been positively associated with functional fitness performance in older adults. Future health promotion activities or related educational strategies can focus on advising older adults to replace sedentary behavior with any form of physical activity during their daily lives or daytime hours. This is aimed at preventing the decline in muscle function and mitigating the risk of disability.
林威秀、黎俊彥 (2004)。身體姿勢平衡與老年人的跌倒。中華體育季刊,18(1),68-75。doi:10.6223/qcpe.1801.200403.1810
洪乙禎 (2020)。台灣老年人口規律運動行為之研究。應用經濟論叢 (107),177-218。
國民健康署 (2018a)。全民身體活動指引。衛生福利部 Retrieved from https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1411
國民健康署 (2018b)。國民健康訪問調查:65歲以上老人失能率。Retrieved from https://data.gov.tw/dataset/88441
國家發展委員會 (2022)。高齡化時程。Retrieved from https://www.ndc.gov.tw/Content_List.aspx?n=D527207EEEF59B9B
連又旻、林倩宇、廖邕 (2022)。從建議到指引:世界衛生組織2010年與2020年身體活動與靜態行為版本之比較。 [From recommendation to guideline: a comparison between the versions of World Health Organization published in 2010 and 2020]. 台灣公共衛生雜誌,41(3),258-264。 doi:10.6288/tjph.202206_41(3).111005
趙叔蘋 (2008)。改善高齡者步行能力之因素探討。中華體育季刊,22(2),34-44。 doi:10.6223/qcpe.2202.200806.1604
賴鼎富、蕭綺、黃婉綺、薛名淳、廖邕 (2022)。三軸加速規應用於身體活動及靜態行為測量使用之敘述性綜論。[Applying the tri-axial accelerometer to measure physical activity and sedentary behavior: A narrative review]. 運動表現期刊,9 (2),59-77。doi:10.53106/240996512022090902001
體育署 (2022)。中華民國110年運動現況調查。Retrieved from https://isports.sa.gov.tw/apps/Download.aspx?SYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2
Albalak, G., Stijntjes, M., Wijsman, C. A., Slagboom, P. E., van der Ouderaa, F. J., Mooijaart, S. P., . . . Noordam, R. (2022). Timing of objectively-collected physical activity in relation to body weight and metabolic health in sedentary older people: a cross-sectional and prospective analysis. International Journal of Obesity, 46(3), 515-522. doi:10.1038/s41366-021-01018-7
Alizadeh, Z., Younespour, S., Rajabian Tabesh, M., & Haghravan, S. (2017). Comparison between the effect of 6 weeks of morning or evening aerobic exercise on appetite and anthropometric indices: a randomized controlled trial. Clin Obes, 7(3), 157-165. doi:10.1111/cob.12187
Allada, R., & Bass, J. (2021). Circadian mechanisms in medicine. New England Journal of Medicine, 384(6), 550-561.
Anderson, E., & Durstine, J. L. (2019). Physical activity, exercise, and chronic diseases: A brief review. Sports Medicine and Health Science, 1(1), 3-10.
Atkinson, G., Leary, A. C., George, K. P., Murphy, M. B., & Jones, H. (2009). 24-hour variation in the reactivity of rate-pressure-product to everyday physical activity in patients attending a hypertension clinic. Chronobiology International, 26(5), 958-973.
Bauman, A., Bull, F., Chey, T., Craig, C. L., Ainsworth, B. E., Sallis, J. F., . . . The, I. P. S. G. (2009). The International Prevalence Study on Physical Activity: results from 20 countries. International Journal of Behavioral Nutrition and Physical Activity, 6(1), 21. doi:10.1186/1479-5868-6-21
Blair, C. K., Morey, M. C., Desmond, R. A., Cohen, H. J., Sloane, R., Snyder, D. C., & Demark-Wahnefried, W. (2014). Light-intensity activity attenuates functional decline in older cancer survivors. Med Sci Sports Exerc, 46(7), 1375-1383. doi:10.1249/mss.0000000000000241
Brennan, C. S. (2020). Disability rights during the pandemic: a global report on findings of the COVID-19 Disability Rights Monitor.
Brennan, M., Bhatti, H., Nerusu, K. C., Bhagavathula, N., Kang, S., Fisher, G. J., . . . Voorhees, J. J. (2003). Matrix Metalloproteinase-1 is the Major Collagenolytic Enzyme Responsible for Collagen Damage in UV-irradiated Human Skin¶. Photochemistry and Photobiology, 78(1), 43-48. doi:https://doi.org/10.1562/0031-8655(2003)0780043MMITMC2.0.CO2
Brenner, P. S., & DeLamater, J. D. (2014). Social desirability bias in self-reports of physical activity: is an exercise identity the culprit? Social Indicators Research, 117(2), 489-504.
Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., . . . Chou, R. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451-1462.
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports, 100(2), 126.
Ceylan, H., Saygın, Ö., & Özel Türkcü, Ü. (2020). Assessment of acute aerobic exercise in the morning versus evening on asprosin, spexin, lipocalin-2, and insulin level in overweight/obese versus normal weight adult men. Chronobiol Int, 37(8), 1252-1268. doi:10.1080/07420528.2020.1792482
Chahine, K. R., Chahine, N. R., & Nader, M. (2022). Morning exercise improves sleep quality in university students. International Journal of Research in Medical Sciences, 10(9), 1858-1864. doi:10.18203/2320-6012.ijrms20222259
Chang, C.-C., Wu, C.-S., Tseng, H.-Y., Lee, C.-Y., Wu, I. C., Hsu, C.-C., . . . Hsiung, C. A. (2022). Assessment of incident frailty hazard associated with depressive symptoms in a Taiwanese longitudinal study. International Psychogeriatrics, 34(1), 61-70. doi:10.1017/S1041610221000806
Chang, C. H., Lin, K. C., Ho, C. S., & Huang, C. C. (2019). Accuracy of the energy expenditure during uphill exercise measured by the Waist-worn ActiGraph. J Exerc Sci Fit, 17(2), 62-66. doi:10.1016/j.jesf.2019.01.003
Chomistek, A. K., Shiroma, E. J., & Lee, I. M. (2016). The Relationship Between Time of Day of Physical Activity and Obesity in Older Women. J Phys Act Health, 13(4), 416-418. doi:10.1123/jpah.2015-0152
Corcoran, M. P., Chui, K. K., White, D. K., Reid, K. F., Kirn, D., Nelson, M. E., . . . Fielding, R. A. (2016). Accelerometer Assessment of Physical Activity and Its Association with Physical Function in Older Adults Residing at Assisted Care Facilities. J Nutr Health Aging, 20(7), 752-758. doi:10.1007/s12603-015-0640-7
Department of Health and Aged Care. (2022). Physical activity and exercise guidelines for all Australians. Retrieved from https://www.health.gov.au/health-topics/physical-activity-and-exercise/physical-activity-and-exercise-guidelines-for-all-australians
DiPietro, L., Al-Ansari, S. S., Biddle, S. J. H., Borodulin, K., Bull, F. C., Buman, M. P., . . . Willumsen, J. F. (2020). Advancing the global physical activity agenda: recommendations for future research by the 2020 WHO physical activity and sedentary behavior guidelines development group. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 143. doi:10.1186/s12966-020-01042-2
Doherty, A., Jackson, D., Hammerla, N., Plötz, T., Olivier, P., Granat, M. H., . . . Wareham, N. J. (2017). Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLOS ONE, 12(2), e0169649. doi:10.1371/journal.pone.0169649
Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., . . . Malik, A. (2021). Hot weather and heat extremes: health risks. The lancet, 398(10301), 698-708.
Fairbrother, K., Cartner, B., Alley, J. R., Curry, C. D., Dickinson, D. L., Morris, D. M., & Collier, S. R. (2014). Effects of exercise timing on sleep architecture and nocturnal blood pressure in prehypertensives. Vascular health and risk management, 691-698.
Feng, H., Yang, L., Liang, Y. Y., Ai, S., Liu, Y., Liu, Y., . . . Zhang, J. (2023). Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study. Nature Communications, 14(1), 930. doi:10.1038/s41467-023-36546-5
Franklin, B. A., Brinks, J., Berra, K., Lavie, C. J., Gordon, N. F., & Sperling, L. S. (2018). Using Metabolic Equivalents in Clinical Practice. The American Journal of Cardiology, 121(3), 382-387. doi:https://doi.org/10.1016/j.amjcard.2017.10.033
Galmes-Panades, A. M., Varela-Mato, V., Konieczna, J., Wärnberg, J., Martínez-González, M., Salas-Salvadó, J., . . . Romaguera, D. (2019). Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMED-Plus study. Int J Behav Nutr Phys Act, 16(1), 137. doi:10.1186/s12966-019-0892-4
Grgic, J., Dumuid, D., Bengoechea, E. G., Shrestha, N., Bauman, A., Olds, T., & Pedisic, Z. (2018). Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 69. doi:10.1186/s12966-018-0691-3
Hannibal, J., Hindersson, P., Østergaard, J., Georg, B., Heegaard, S., Larsen, P. J., & Fahrenkrug, J. (2004). Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Investigative ophthalmology & visual science, 45(11), 4202-4209.
Hartley, S., Garland, S., Young, E., Bennell, K. L., Tay, I., Gorelik, A., & Wark, J. D. (2015). A comparison of self-reported and objective physical activity measures in young Australian women. JMIR Public Health and Surveillance, 1(2), e4259.
Hood, S., & Amir, S. (2017). The aging clock: circadian rhythms and later life. The Journal of Clinical Investigation, 127(2), 437-446. doi:10.1172/JCI90328
Hsueh, M. C., Rutherford, R., Chou, C. C., Park, J. H., Park, H. T., & Liao, Y. (2020). Objectively assessed physical activity patterns and physical function in community-dwelling older adults: a cross-sectional study in Taiwan. BMJ Open, 10(8), e034645. doi:10.1136/bmjopen-2019-034645
Huisingh-Scheetz, M., Wroblewski, K., Kocherginsky, M., Huang, E., Dale, W., Waite, L., & Schumm, L. P. (2018). The Relationship Between Physical Activity and Frailty Among U.S. Older Adults Based on Hourly Accelerometry Data. J Gerontol A Biol Sci Med Sci, 73(5), 622-629. doi:10.1093/gerona/glx208
Izawa, K. P., Shibata, A., Ishii, K., Miyawaki, R., & Oka, K. (2017). Associations of low-intensity light physical activity with physical performance in community-dwelling elderly Japanese: A cross-sectional study. PLOS ONE, 12(6), e0178654. doi:10.1371/journal.pone.0178654
Janssen, I., Heymsfield, S. B., & Ross, R. (2002). Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. Journal of the American Geriatrics Society, 50(5), 889-896. doi:https://doi.org/10.1046/j.1532-5415.2002.50216.x
Jia, H., & Lubetkin, E. I. (2020). Life expectancy and active life expectancy by disability status in older U.S. adults. PLOS ONE, 15(9), e0238890. doi:10.1371/journal.pone.0238890
Jones, H., Green, D. J., George, K. P., Black, M. A., & Atkinson, G. (2009). Evidence for a greater elevation in vascular shear stress after morning exercise. Medicine and science in sports and exercise, 41(6), 1188-1193.
Keevil, V. L., Cooper, A. J., Wijndaele, K., Luben, R., Wareham, N. J., Brage, S., & Khaw, K. T. (2016). Objective Sedentary Time, Moderate-to-Vigorous Physical Activity, and Physical Capability in a British Cohort. Med Sci Sports Exerc, 48(3), 421-429. doi:10.1249/mss.0000000000000785
Kelly, L. A., McMillan, D. G. E., Anderson, A., Fippinger, M., Fillerup, G., & Rider, J. (2013). Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Medical Physics, 13(1), 5. doi:10.1186/1756-6649-13-5
Khoshnoud, F., & Silva, C. W. d. (2012). Recent advances in MEMS sensor technology-mechanical applications. IEEE Instrumentation & Measurement Magazine, 15(2), 14-24. doi:10.1109/MIM.2012.6174574
Klenk, J., Dallmeier, D., Denkinger, M. D., Rapp, K., Koenig, W., & Rothenbacher, D. (2016). Objectively Measured Walking Duration and Sedentary Behaviour and Four-Year Mortality in Older People. PLOS ONE, 11(4), e0153779. doi:10.1371/journal.pone.0153779
Kline, C. E., Hillman, C. H., Bloodgood Sheppard, B., Tennant, B., Conroy, D. E., Macko, R. F., . . . Erickson, K. I. (2021). Physical activity and sleep: An updated umbrella review of the 2018 Physical Activity Guidelines Advisory Committee report. Sleep Medicine Reviews, 58, 101489. doi:https://doi.org/10.1016/j.smrv.2021.101489
Lai, T.-F., Liao, Y., Hsueh, M.-C., Lin, K.-P., Chan, D.-C., Chen, Y.-M., & Wen, C.-J. (2023). Effect of isotemporal substitution of sedentary behavior with different intensities of physical activity on the muscle function of older adults in the context of a medical center. BMC Geriatrics, 23(1), 130. doi:10.1186/s12877-023-03819-z
Lai, T.-F., Liao, Y., Lin, C.-Y., Hsueh, M.-C., Koohsari, M. J., Shibata, A., . . . Chan, D.-C. (2023). Diurnal pattern of breaks in sedentary time and the physical function of older adults. Archives of Public Health, 81(1), 35. doi:10.1186/s13690-023-01050-1
Lai, T.-F., Liao, Y., Lin, C.-Y., Huang, W.-C., Hsueh, M.-C., & Chan, D.-C. (2020). Moderate-to-vigorous physical activity duration is more important than timing for physical function in older adults. Scientific Reports, 10(1), 21344. doi:10.1038/s41598-020-78072-0
Lee, P. H., Macfarlane, D. J., Lam, T. H., & Stewart, S. M. (2011). Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 1-11.
Lerma, N. L., Cho, C. C., Swartz, A. M., Miller, N. E., Keenan, K. G., & Strath, S. J. (2018). Isotemporal Substitution of Sedentary Behavior and Physical Activity on Function. Med Sci Sports Exerc, 50(4), 792-800. doi:10.1249/mss.0000000000001491
Li, Z., Tong, X., Ma, Y., Bao, T., & Yue, J. (2022). Prevalence of depression in patients with sarcopenia and correlation between the two diseases: systematic review and meta-analysis. Journal of Cachexia, Sarcopenia and Muscle, 13(1), 128-144. doi:https://doi.org/10.1002/jcsm.12908
Lyu, L.-C., Lin, C.-F., Chang, F.-H., Chen, H.-F., Lo, C.-C., & Ho, H.-F. (2007). Meal distribution, relative validity and reproducibility of a meal-based food frequency questionnaire in Taiwan. Asia Pacific Journal of Clinical Nutrition, 16(4).
Ma, T., Jennings, L., Sirard, J. R., Xie, Y. J., & Lee, C.-D. (2023). Association of the time of day of peak physical activity with cardiovascular mortality: Findings from the UK Biobank study. Chronobiology International, 40(3), 324-334.
Ma, T., Sirard, J. R., & Jennings, L. (2023). Association of Time-of-Day Physical Activity With Incident Cardiovascular Disease: The UK Biobank Study. Journal of Physical Activity and Health, 20(6), 547-554. doi:10.1123/jpah.2022-0505
Mañas, A., Del Pozo-Cruz, B., Guadalupe-Grau, A., Marín-Puyalto, J., Alfaro-Acha, A., Rodríguez-Mañas, L., . . . Ara, I. (2018). Reallocating Accelerometer-Assessed Sedentary Time to Light or Moderate- to Vigorous-Intensity Physical Activity Reduces Frailty Levels in Older Adults: An Isotemporal Substitution Approach in the TSHA Study. J Am Med Dir Assoc, 19(2), 185.e181-185.e186. doi:10.1016/j.jamda.2017.11.003
Manini, T. M., & Pahor, M. (2009). Physical activity and maintaining physical function in older adults. British Journal of Sports Medicine, 43(1), 28. doi:10.1136/bjsm.2008.053736
Mekary, R. A., & Ding, E. L. (2019). Isotemporal Substitution as the Gold Standard Model for Physical Activity Epidemiology: Why It Is the Most Appropriate for Activity Time Research. Int J Environ Res Public Health, 16(5). doi:10.3390/ijerph16050797
Morey, M. C., Sloane, R., Pieper, C. F., Peterson, M. J., Pearson, M. P., Ekelund, C. C., . . . Cohen, H. J. (2008). Effect of Physical Activity Guidelines on Physical Function in Older Adults. Journal of the American Geriatrics Society, 56(10), 1873-1878. doi:https://doi.org/10.1111/j.1532-5415.2008.01937.x
Motl, R. W., & McAuley, E. (2010). Physical activity, disability, and quality of life in older adults. Physical Medicine and Rehabilitation Clinics, 21(2), 299-308.
Myers, J. (2003). Exercise and Cardiovascular Health. Circulation, 107(1), e2-e5. doi:doi:10.1161/01.CIR.0000048890.59383.8D
Ogama, N., Sakurai, T., Kawashima, S., Tanikawa, T., Tokuda, H., Satake, S., . . . Kuzuya, M. (2019). Association of Glucose Fluctuations with Sarcopenia in Older Adults with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 8(3), 319. Retrieved from https://www.mdpi.com/2077-0383/8/3/319
Osuka, Y., Yabushita, N., Kim, M., Seino, S., Nemoto, M., Jung, S., . . . Tanaka, K. (2015). Association between habitual light-intensity physical activity and lower-extremity performance: a cross-sectional study of community-dwelling older Japanese adults. Geriatr Gerontol Int, 15(3), 268-275. doi:10.1111/ggi.12268
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., . . . Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. doi:10.1136/bmj.n71
Pana, A., Sourtzi, P., Kalokairinou, A., Pastroudis, A., Chatzopoulos, S.-T., & Velonaki, V. S. (2021). Association between muscle strength and sleep quality and duration among middle-aged and older adults: a systematic review. European Geriatric Medicine, 12(1), 27-44. doi:10.1007/s41999-020-00399-8
Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., . . . Olson, R. D. (2018). The physical activity guidelines for Americans. Jama, 320(19), 2020-2028.
Qian, J., Scheer, F. A., Hu, K., & Shea, S. A. (2019). The circadian system modulates the rate of recovery of systolic blood pressure after exercise in humans. Sleep, 43(4). doi:10.1093/sleep/zsz253
Ramsey, K. A., Rojer, A. G. M., D’Andrea, L., Otten, R. H. J., Heymans, M. W., Trappenburg, M. C., . . . Maier, A. B. (2021). The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: A systematic review and meta-analysis. Ageing Research Reviews, 67, 101266. doi:https://doi.org/10.1016/j.arr.2021.101266
Reid, K. F., Pasha, E., Doros, G., Clark, D. J., Patten, C., Phillips, E. M., . . . Fielding, R. A. (2014). Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol, 114(1), 29-39. doi:10.1007/s00421-013-2728-2
Reuter, C., Bellettiere, J., Liles, S., Di, C., Sears, D. D., LaMonte, M. J., . . . Natarajan, L. (2020). Diurnal patterns of sedentary behavior and changes in physical function over time among older women: a prospective cohort study. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 88. doi:10.1186/s12966-020-00992-x
Sánchez-Sánchez, J. L., Mañas, A., García-García, F. J., Ara, I., Carnicero, J. A., Walter, S., & Rodríguez-Mañas, L. (2019). Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: isotemporal substitution model. Journal of Cachexia, Sarcopenia and Muscle, 10(1), 188-198. doi:https://doi.org/10.1002/jcsm.12369
Sartini, C., Wannamethee, S. G., Iliffe, S., Morris, R. W., Ash, S., Lennon, L., . . . Jefferis, B. J. (2015). Diurnal patterns of objectively measured physical activity and sedentary behaviour in older men. BMC Public Health, 15, 609. doi:10.1186/s12889-015-1976-y
Scheer, F. A. J. L., Hu, K., Evoniuk, H., Kelly, E. E., Malhotra, A., Hilton, M. F., & Shea, S. A. (2010). Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proceedings of the National Academy of Sciences, 107(47), 20541-20546. doi:doi:10.1073/pnas.1006749107
Scott, D., Johansson, J., Gandham, A., Ebeling, P. R., Nordstrom, P., & Nordstrom, A. (2021). Associations of accelerometer-determined physical activity and sedentary behavior with sarcopenia and incident falls over 12 months in community-dwelling Swedish older adults. J Sport Health Sci, 10(5), 577-584. doi:10.1016/j.jshs.2020.01.006
Shi, L., Zhang, L., Zhang, D., & Chen, Z. (2023). Association between systemic immune-inflammation index and low muscle mass in US adults: a cross-sectional study. BMC Public Health, 23(1), 1416. doi:10.1186/s12889-023-16338-8
Shih, T.-Y. (2020). Medical Cloud Service Innovation-The Case of Netown Company. International Journal of Research in Business Studies and Management, 7(1), PP 1-11.
Simoneau, E., Martin, A., & Van Hoecke, J. (2007). Effects of joint angle and age on ankle dorsi- and plantar-flexor strength. J Electromyogr Kinesiol, 17(3), 307-316. doi:10.1016/j.jelekin.2006.04.005
Spartano, N. L., Lyass, A., Larson, M. G., Tran, T., Andersson, C., Blease, S. J., . . . Murabito, J. M. (2019). Objective physical activity and physical performance in middle-aged and older adults. Exp Gerontol, 119, 203-211. doi:10.1016/j.exger.2019.02.003
Stamatakis, E., Rogers, K., Ding, D., Berrigan, D., Chau, J., Hamer, M., & Bauman, A. (2015). All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: a prospective study of 201,129 mid-aged and older adults. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 121. doi:10.1186/s12966-015-0280-7
Steffener, J., Habeck, C., O'Shea, D., Razlighi, Q., Bherer, L., & Stern, Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiol Aging, 40, 138-144. doi:10.1016/j.neurobiolaging.2016.01.014
Stenholm, S., Pulakka, A., Leskinen, T., Pentti, J., Heinonen, O. J., Koster, A., & Vahtera, J. (2021). Daily Physical Activity Patterns and Their Association With Health-Related Physical Fitness Among Aging Workers-The Finnish Retirement and Aging Study. J Gerontol A Biol Sci Med Sci, 76(7), 1242-1250. doi:10.1093/gerona/glaa193
Su, Y.-J., Hsu, C.-T., Liang, C., Lee, P.-F., Lin, C.-F., Chen, H.-T., & Ho, C.-C. (2022). Association between health-related physical fitness and self-reported health status in older Taiwanese adults. BMC Geriatrics, 22(1), 235. doi:10.1186/s12877-022-02929-4
Tay, L., Tay, E. L., Mah, S. M., Latib, A., Koh, C., & Ng, Y. S. (2023). Association of Intrinsic Capacity with Frailty, Physical Fitness and Adverse Health Outcomes in Community-Dwelling Older Adults. The Journal of Frailty & Aging, 12(1), 7-15. doi:10.14283/jfa.2022.28
Tremblay, M. S., Aubert, S., Barnes, J. D., Saunders, T. J., Carson, V., Latimer-Cheung, A. E., . . . on behalf of, S. T. C. P. P. (2017). Sedentary Behavior Research Network (SBRN) – Terminology Consensus Project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 75. doi:10.1186/s12966-017-0525-8
Tremblay, M. S., Carson, V., Chaput, J.-P., Connor Gorber, S., Dinh, T., Duggan, M., . . . Janson, K. (2016). Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Applied Physiology, Nutrition, and Metabolism, 41(6), S311-S327.
Troiano, R. P., Berrigan, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc, 40(1), 181-188. doi:10.1249/mss.0b013e31815a51b3
Tully, M. A., McMullan, I., Blackburn, N. E., Wilson, J. J., Bunting, B., Smith, L., . . . Caserotti, P. (2020). Sedentary behavior, physical activity, and mental health in older adults: An isotemporal substitution model. Scandinavian Journal of Medicine & Science in Sports, 30(10), 1957-1965. doi:https://doi.org/10.1111/sms.13762
United Nations. (2015). Take Action for the Sustainable Development Goals. Retrieved from https://www.un.org/sustainabledevelopment/sustainable-development-goals/
United Nations. (2017). World Population Ageing 2015: United Nations.
Van Laake, L. W., Lüscher, T. F., & Young, M. E. (2018). The circadian clock in cardiovascular regulation and disease: Lessons from the Nobel Prize in Physiology or Medicine 2017. European heart journal, 39(24), 2326-2329.
Veen, J., Montiel-Rojas, D., Kadi, F., & Nilsson, A. (2022). Effects of Reallocating Time Spent in Different Physical Activity Intensities on Sarcopenia Risk in Older Adults: An Isotemporal Substitution Analysis. Biology, 11(1), 111. Retrieved from https://www.mdpi.com/2079-7737/11/1/111
Wåhlin-Larsson, B., Wilkinson, Daniel J., Strandberg, E., Hosford-Donovan, A., Atherton, Philip J., & Kadi, F. (2017). Mechanistic Links Underlying the Impact of C-Reactive Protein on Muscle Mass in Elderly. Cellular Physiology and Biochemistry, 44(1), 267-278. doi:10.1159/000484679
Wang, W. Y., Hsieh, Y. L., Hsueh, M. C., Liu, Y., & Liao, Y. (2019). Accelerometer-Measured Physical Activity and Sedentary Behavior Patterns in Taiwanese Adolescents. Int J Environ Res Public Health, 16(22). doi:10.3390/ijerph16224392
Weitzer, J., Castaño-Vinyals, G., Aragonés, N., Gómez-Acebo, I., Guevara, M., Amiano, P., . . . Kogevinas, M. (2021). Effect of time of day of recreational and household physical activity on prostate and breast cancer risk (MCC-Spain study). Int J Cancer, 148(6), 1360-1371. doi:10.1002/ijc.33310
Wennman, H., Pietilä, A., Rissanen, H., Valkeinen, H., Partonen, T., Mäki-Opas, T., & Borodulin, K. (2019). Gender, age and socioeconomic variation in 24-hour physical activity by wrist-worn accelerometers: the FinHealth 2017 Survey. Scientific Reports, 9(1), 6534. doi:10.1038/s41598-019-43007-x
Willis, E. A., Creasy, S. A., Honas, J. J., Melanson, E. L., & Donnelly, J. E. (2020). The effects of exercise session timing on weight loss and components of energy balance: midwest exercise trial 2. Int J Obes (Lond), 44(1), 114-124. doi:10.1038/s41366-019-0409-x
World Health Organization. (2020). WHO guidelines on physical activity and sedentary behaviour. (9240015116). Retrieved from https://www.who.int/publications/i/item/9789240015128
World Health Organization. (2022a). GHE: Life expectancy and healthy life expectancy. Retrieved from https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy
World Health Organization. (2022b). Global status report on physical activity 2022: executive summary.
Xu, S. Y., Nelson, S., Kerr, J., Godbole, S., Johnson, E., Patterson, R. E., . . . Natarajan, L. (2019). Modeling Temporal Variation in Physical Activity Using Functional Principal Components Analysis. Statistics in Biosciences, 11(2), 403-421. doi:10.1007/s12561-019-09237-3
Yasunaga, A., Shibata, A., Ishii, K., Inoue, S., Sugiyama, T., Owen, N., & Oka, K. (2018). Replacing sedentary time with physical activity: effects on health-related quality of life in older Japanese adults. Health and Quality of Life Outcomes, 16(1), 240. doi:10.1186/s12955-018-1067-8
Yasunaga, A., Shibata, A., Ishii, K., Koohsari, M. J., Inoue, S., Sugiyama, T., . . . Oka, K. (2017). Associations of sedentary behavior and physical activity with older adults’ physical function: an isotemporal substitution approach. BMC Geriatrics, 17(1), 280. doi:10.1186/s12877-017-0675-1
Zeitzer, J. M., Blackwell, T., Hoffman, A. R., Cummings, S., Ancoli-Israel, S., Stone, K., & Group, O. F. i. M. S. R. (2017). Daily Patterns of Accelerometer Activity Predict Changes in Sleep, Cognition, and Mortality in Older Men. The Journals of Gerontology: Series A, 73(5), 682-687. doi:10.1093/gerona/glw250