研究生: |
鄭竣元 Zheng, Jun-Yuan |
---|---|
論文名稱: |
艾利颱風 (2016) 遠距降水之原因探討 A Numerical Study of Distant Rainfall Associated with Typhoon Aere (2016) |
指導教授: |
簡芳菁
Chien, Fang-Ching |
口試委員: |
王重傑
Wang, Chung-Chieh 周昆炫 Chou, Kun-Hsuan 簡芳菁 Chien, Fang-Ching |
口試日期: | 2023/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 颱風遠距降水 、ETKF 、秋季颱風 、地形效應 |
研究方法: | 次級資料分析 、 個案研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202301699 |
論文種類: | 學術論文 |
相關次數: | 點閱:110 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對2016年10月6日至9日受艾利颱風與綜觀環境場影響,在臺灣東半部發生之強降雨事件進行分析。使用WRF數值模式進行模擬,透過ETKF資料同化產生之64個系集成員進行降雨機制的探討。
在風場強度與累積降雨的相關係數分析中,發現各系集成員之降雨模擬對於風場強度有很高的敏感度。透過將系集成員分成強風組 (strong wind group, SW) 和弱風組 (weak wind group, WW) 進行分析發現兩組降雨差異主要出現在臺灣東南部的區域,SW相比WW在該區有較接近觀測之降雨量,且透過風場以及水氣場的比較後發現颱風環流的發展是造成該雨區降雨的關鍵因素。而整起降雨事件根據主導的天氣系統不同,可以大致以7日0600 UTC為劃分。前期降雨主要受綜觀環境場的低壓環流影響,後期則是由艾利颱風的外圍環流主導。
在颱風環流敏感度實驗中,透過海溫調降使成員中整體風場條件最好的m7之颱風環流減弱。結果顯示原本颱風環流與綜觀環境場之低壓環流的合流因此減弱,分析後發現此合流是致使後續臺灣東南部降雨的關鍵因素。在水氣敏感度實驗中則是調整m7初始相對濕度來改善事件前期花蓮附近之區域降雨,結果發現降雨肇因為低壓環流勢力北上後,將水氣帶至臺灣東部,低層東南風受地形抬升形成降雨。
林士然,2014:奈格颱風引起遠距降雨之個案研究,國立臺灣師範大學地球科學研究所,碩士論文。
連國淵,2009:颱風路徑與結構同化研究─系集卡爾曼濾波器,國立臺灣大學理學院大氣科學研究所,碩士論文。
郭章億,2021:尼伯特颱風 (2016) 離台後的西南氣流和強降雨之數值模擬研究,國立臺灣師範大學地球科學研究所,碩士論文。
張竣堯,2021:2017年六月1–3日梅雨鋒面個案之數值模擬研究,國立臺灣師範大學地球科學研究所,碩士論文。
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436.
Chen, T.-C. and C.-C. Wu, 2016: The remote effect of typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan. Mon. Wea. Rev., 144, 3109–3131.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci, 46, 3077–3107.
Hong, S.-Y., Y. Noh, J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Huang, C.-Y., C.-W. Chou, S.-H. Chen, and J.-H. Xie, 2020: Topographic rainfall of tropical cyclones past a mountain range as categorized by idealized simulations. Wea. Forecasting, 35, 25–49.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633–660.
Lin, Y.-H. and C.-C. Wu, 2021: Remote rainfall of Typhoon Khanun (2017): monsoon mode and topographic mode. Mon. Wea. Rev., 149, 733-752.
Lin, C.-Y. and C.-K. Yu, 2021: Taiwan rainbands formed in the outer region of tropical cyclones. Mon. Wea. Rev., 149, 1403–1418.
Majumdar, S. J., C. H. Bishop, B. J. Etherton, and Z. Toth, 2002: Adaptive sampling with the ensemble transform Kalman filter. Part II: Field program implementation. Mon. Wea. Rev., 130, 1356–1369.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.
Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill.
Wea. Forecasting, 5, 570–575.
Schumacher, R. S., T. J. Galarneau Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139, 650–667.
Smith, M. B., R. D. Torn, K. L. Corbosiero, and P. Pegion, 2020: Ensemble variability in rainfall forecasts of Hurricane Irene (2011). Wea. Forecasting, 35, 1761–1781.
Tien, T. T., D. N.-Q. Hoa, C. Thanh, and C. Kieu, 2020: Assessing the impacts of augmented observations on the forecast of Typhoon Wutip’s (2013) formation using the ensemble Kalman filter. Wea. Forecasting, 35, 1483–1503.
Wang, X. and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci, 60, 1140–1158.
Wang, Y., Y. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 3699–3716.
Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001–1015.
Wu, C.-C., K. K. W. Cheung, and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to the interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev., 137, 2049–2064.
Wu, C.-C., S.-G. Chen, S.-C. Lin, T.-H. Yen, and T.-C. Chen, 2013: Uncertainty and predictability of tropical cyclone rainfall based on ensemble simulations of Typhoon Sinlaku (2008). Mon. Wea. Rev., 141, 3517–3538.
Zhang, C. and Y. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 5923–5941.