簡易檢索 / 詳目顯示

研究生: 陳信仲
Chen, Sin-Jhong
論文名稱: 製備金銀合金奈米島狀薄膜及螢光增強測試
Development of Gold and Silver Alloy Nano-island Film for Metal-enhanced Fluorescence
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 52
中文關鍵詞: 表面電漿共振金屬增強螢光金銀合金奈米島狀薄膜
英文關鍵詞: localized surface plasmon resonance, metal-enhance fluorescence, Au-Ag alloy island film
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.004.2019.B05
論文種類: 學術論文
相關次數: 點閱:229下載:161
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬奈米材料的局部表面電漿共振(Localized Surface Plasmon Resonance,LSPR)現象對螢光物質有螢光增強效果。此效果稱之為金屬增強螢光(Metal-Enhanced fluorescence,MEF),一直以來金屬增強螢光效果被科學家們廣泛利用。
      在各種金屬奈米材料合成方法中,本論文實驗是使用簡單無電鍍法方式來製備金銀合金奈米島狀薄膜。在溶液相中透過二次生長晶種方法,將金屬奈米金粒子當作晶種附著在玻璃基材上。利用羥胺為還原劑將金離子還原並藉由晶種持續長大在玻璃基材表面上形成金奈米島狀薄膜。然後這之上再利用葡萄糖為還原劑將銀離子還原並在金奈米島狀薄膜表面形成金銀合金奈米島狀結構薄膜。
      為了得到螢光值最佳放大倍率,實驗一系列的優化條件。通過控制溶液不同長晶時間、不同離子濃度以及不同生長溫度,期望製作出最理想金銀合金奈米島狀薄膜。並且具有 LSPR 的金銀合金奈米島狀薄膜與表面螢光分子streptavidin-IR800 互相作用,使得螢光訊號放大。透過修飾硫十一醇(11-mercapto-1-undecanol,11-MUD)的金銀合金奈米島狀薄膜表面,使得螢光分子可以鍵結在島與島之間空隙中,得到螢光值最佳放大倍率。
      此實驗方法對環境無害、簡單且容易製備。可應用於檢測環境方面以及醫學生物相關應用,具備精準、快速且高靈敏度的優點。檢驗時只需少量的採樣樣品,即可有明顯強大的訊號。在醫學生物檢測方面可以幫助人們在日常生活中方便快速,偵測評估自己的生理狀況。

    關鍵字:表面電漿共振、金屬增強螢光、金銀合金奈米島狀薄膜

    The localized surface plasmon resonance (LSPR) of metallic nano-materials can give fluorescent enhancement to fluorescent materials. This effect is called metal-enhanced fluorescence (MEF), and it has being widely applied by scientists.
    Among all synthesizing methods of metallic nano-materials, the study prepares an Au-Ag alloy island film with the electroless plating technique in experiments. Metallic gold nanoparticles are deposited on a glass substrate as seed crystals via secondary growth method in the solution phase. After that, gold ions are reduced with hydroxylamine as a reducing agent and keep growing with seed crystals to form a gold island film on the surface of the glass substrate. Following that, silver ions are also reduced with d-glucose as a reducing agent and form an Au-Ag alloy island film on the surface of the gold island film.
    A variety of optimal conditions has been experimented to obtain the highest magnification ratio of fluorescence, including controls on different timing of crystal generation, ion concentration and growth temperature in expectation to make the most ideal Au-Ag alloy island film. Besides, the Au-Ag alloy island film with LSPR effect can intensify the fluorescence signal by interacting with streptavidin-IR800, the surface fluorescent molecules. Finally, the Au-Ag alloy island film, which modifies 11-mercapto-1-undecanol (11-MUD), can make fluorescent molecules form bonds in the intervals between islands and achieve the best magnification ratio.
    This eco-friendly, simple, and easy-to-prepare experimental method can be adopted in fields related to environmental measuring and biomedical sciences with its high accuracy, speed, and sensitivity. When measuring, it takes only few samples to receive clear, powerful signals; in terms of biomedical sciences, this method also helps people to assess their own physiological conditions in a fast, convenient way in daily life.

    Keywords:
    localized surface plasmon resonance, metal-enhance fluorescence, Au-Ag alloy island film

    第一章 奈米材料 1-1 奈米材料的演進 1 1-2 奈米材料的性質 3 1-3 奈米材料的製備方法介紹 7 1-4 奈米材料之應用 10 第二章 奈米金屬 13 2-1 奈米金屬之表面電漿共振 13 2-2 奈米金屬螢光增強 15 奈米金屬螢光增強理論 15 奈米金屬螢光增強方法 17 奈米金屬螢光增強應用 17 2-3 奈米金屬島狀結構 18 2-4 生物素與素與生物素 20 2-5 螢光分子 21 2-6 研究目的與動機 22 第三章 實驗 23 3-1 實驗藥品 23 3-2 實驗器材及儀器介紹 24 3-2-1 恆溫循環水槽(FIRSTEK B401H) 24 3-2-2 迴轉式恆溫水槽(B601D) 24 3-2-3 玻片迷你微量離心機(LP-1414) 25 3-2-4 紫外光-可見光光譜儀(UV-Visible spectrophotometer) 25 3-2-5 迴轉式震盪器(OS-701) 26 3-2-6 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 26 3-2-7 16孔盤(FAST frame slide holders) 27 3-2-8 微陣列螢光掃描儀(Microarray Fluorescence Scanning Device) 27 3-3 實驗步驟 28 3-4-1 清洗玻璃載玻片及羧酸化 28 3-4-2 一次生長晶製備奈米金屬粒子之薄膜 29 3-4-3 二次生長晶製備奈米金屬之島狀薄膜 30 3-4-4 奈米島狀薄膜之修飾 32 3-4-5 修飾螢光物質streptavidin-IR800 34 第四章 結果與討論 35 4-1 金奈米島狀薄膜 35 金奈米島狀薄膜分析 35 4-2 金奈米島狀薄膜之表面形貌與LSPR性質 36 4-2-1 前驅物濃度對奈米島狀薄膜之影響 36 4-2-2 反應時間和溫度對奈米島狀薄膜之影響 36 4-2-3 反應位置對奈米島狀薄膜之影響 38 4-2-4 修飾不同的硫醇對奈米島狀薄膜之影響 38 4-3 金奈米島狀薄膜之螢光增強測試 39 4-3-1 螢光增強對照組條件 39 4-3-2 前驅物濃度不同的螢光增強測試 41 4-3-3 金奈米島狀生長溫度、反應時間的螢光增強測試 43 4-3-4 表面修飾不同硫醇的螢光增強測試 45 4-4 金銀合金奈米島狀薄膜 46 金銀合金奈米島狀薄膜分析 46 4-5 合金奈米島狀薄膜之表面形貌與LSPR性質 47 4-5-1 不同反應條件奈米島狀薄膜之比較 47 4-5-2 金銀奈米島狀薄膜修飾不同硫醇之影響 47 4-6 合金奈米島狀薄膜之螢光增強測試 48 第五章 結論與未來展望 50 第六章 參考資料 51

    1. Hulla, J.E., S.C. Sahu, and A.W. Hayes, Nanotechnology: History and future. Human & Experimental Toxicology, 2015. 34(12): p. 1318-1321.
    2. 牟中原、陳家俊, 科學發展, 2000. 28(4): p. 281-288.
    3. Liu, S. and Z. Tang, Nanoparticle assemblies for biological and chemical sensing. Journal of Materials Chemistry, 2010. 20(1): p. 24-35.
    4. Takagahara, T. and K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B, 1992. 46(23): p. 15578-15581.
    5. Miller, J.S. and A.J. Epstein, Organic and Organometallic Molecular Magnetic Materials—Designer Magnets. Angewandte Chemie International Edition in English, 1994. 33(4): p. 385-415.
    6. Piner, R.D., et al., "Dip-Pen" Nanolithography. Science, 1999. 283(5402): p. 661.
    7. Pareek, V.B., Arpit; Gupta, Rinki; Jain, Navin; Panwar, Jitendra, Synthesis and Applications of Noble Metal Nanoparticles: A Review. 2017. 9: p. 527.
    8. Chen, C.-L., et al., In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons. Biomaterials, 2010. 31(14): p. 4104-4112.
    9. Willets, K.A. and R.P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007. 58(1): p. 267-297.
    10. Ni, F.C., T. M. Anal. Chem., Chemical Procedure for Preparing Surface-Enhanced Raman Scattering Active Silver Films. 1986. 58: p. 3159.
    11. Peiris, S., J. McMurtrie, and H.-Y. Zhu, Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science & Technology, 2016. 6(2): p. 320-338.
    12. Aslan, K., et al., Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons. Journal of Fluorescence, 2005. 15(5): p. 643.
    13. Zhang, Y., et al., Low Temperature Metal-Enhanced Fluorescence. Journal of Fluorescence, 2007. 17(6): p. 627-631.
    14. Aslan, K., J.R. Lakowicz, and C.D. Geddes, Rapid Deposition of Triangular Silver Nanoplates on Planar Surfaces:  Application to Metal-Enhanced Fluorescence. The Journal of Physical Chemistry B, 2005. 109(13): p. 6247-6251.
    15. Aslan, K., et al., Fast and Slow Deposition of Silver Nanorods on Planar Surfaces:  Application to Metal-Enhanced Fluorescence. The Journal of Physical Chemistry B, 2005. 109(8): p. 3157-3162.
    16. Tabakman, S.M., et al., A New Approach to Solution-Phase Gold Seeding for SERS Substrates. Small, 2011. 7(4): p. 499-505.
    17. Gole, A. and C.J. Murphy, Biotin−Streptavidin-Induced Aggregation of Gold Nanorods:  Tuning Rod−Rod Orientation. Langmuir, 2005. 21(23): p. 10756-10762.
    18. Caswell, K.K., et al., Preferential End-to-End Assembly of Gold Nanorods by Biotin−Streptavidin Connectors. Journal of the American Chemical Society, 2003. 125(46): p. 13914-13915.
    19. Abel, B., et al., Metal-Enhanced Fluorescence from Silver Nanowires with High Aspect Ratio on Glass Slides for Biosensing Applications. The Journal of Physical Chemistry C, 2015. 119(1): p. 675-684.
    20. Zhang, J., et al., Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer:  Coupling Effect between Metal Particles. Nano Letters, 2007. 7(7): p. 2101-2107.
    21. Sánchez-Iglesias, A., et al., Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today, 2010. 5(1): p. 21-27.
    22. Kruss, S., et al., Au–Ag Hybrid Nanoparticle Patterns of Tunable Size and Density on Glass and Polymeric Supports. Langmuir, 2012. 28(2): p. 1562-1568.
    23. Tiani, D.J. and J.E. Pemberton, Emersion of 11-Mercapto-1-undecanol-Modified Ag Substrates from Aqueous and Nonaqueous Solvents:  The Effect of Emersion Velocity on Emersed Solvent Layer Thickness. Langmuir, 2003. 19(16): p. 6422-6429.

    下載圖示
    QR CODE