簡易檢索 / 詳目顯示

研究生: 戴詠璇
Dai, Yong-Xuan
論文名稱: 健康族群在不同弓箭步的下肢肌肉共同收縮特徵
Lower Extremity Muscle Co-contraction Characters During Different Plane of Lunges in Healthy Individuals
指導教授: 李恆儒
Lee, Heng-Ju
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 56
中文關鍵詞: 後箭步肌電訊號共同活化
英文關鍵詞: reverse lunges, electromyography, co-contraction
DOI URL: http://doi.org/10.6345/THE.NTNU.DPE.002.2018.F03
論文種類: 學術論文
相關次數: 點閱:181下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 弓箭步動作被廣泛的運用於增強股四頭肌與腿後肌的力量,並有助於促進肌肉共同活化,共同活化可以增強肌肉在執行動作時的功能,且可以用來評估關節的穩定性,因此,了解股四頭肌和腿後肌的活化狀態,能有益於預防膝關節損傷和運動的穩定。本研究目的為比較三種弓箭步肌肉活化狀態、共同收縮模式及關節力矩,從中找出三種動作的生物力學特徵。實驗招募12名健康大專男性 (年齡20.7 ± 1.4歲,身高174.6 ± 3.9公分,體重68.8 ± 8.5公斤)、10台Vicon紅外線攝影機 (200Hz)、Kistler測力板2塊 (1000Hz)、5個Delsys肌電電極 (1000Hz)。肌電電極黏貼於慣用腳的股直肌、股內側、股外側、股二頭與半腱肌,收集不同弓箭步動作中的肌肉活化情形,收集肌肉活化、關節力矩並計算肌肉共同活化比 (為平均股四頭肌活化除以平均腿後肌活化)。統計方法以SPSS20.0版利用單因子重複量數變異數分析 (One way ANOVA with repeated measures) 來比較不同方向弓箭步對肌肉活化的影響。顯著水準設為α = .05。研究結果顯示無論下蹲期或上升期股四頭肌在側弓箭步的活化最大,且三種弓箭步在上升期的股四頭肌活化皆大於下蹲期;而無論下蹲期或上升期腿後肌在後弓箭步的活化最大,且三種弓箭步在上升期的腿後肌活化皆大於下蹲期;側弓箭步的膝關節伸肌力矩為三種弓箭步中最大,比較共同活化發現後弓箭步的比值最趨近於1,而側弓箭不得比值最大。由上述結果結論股四頭肌在側弓箭步的活化最高,在膝關節的伸肌力矩也較高,進而造成側弓箭步在股四頭肌與腿後肌的比值也是三者間最高。而腿後肌在後弓箭步的活化最高,在膝關節伸膝力矩顯著的小於側弓箭步,而在股四頭肌與腿後肌的共同活化比值較接近1。側弓箭步較為股四頭肌主導的動作,會增加膝關節不穩定的機率,因而增加受傷的風險,而後弓箭步因為股四頭肌與腿後肌活化比率較平衡,能提高膝關節穩定性。三種弓箭步都能促進肌肉的共同活化,只是會因為不同方向產生不一樣的肌肉活化比,因此在選擇動作的過程中,可以循序漸進的選擇膝關節穩定性最高的後弓箭步,先強化膝關節的穩定,最後再進階到較具有挑戰性的側弓箭步,避免膝關節一開始就有過大的負荷。

    Lunge exercises were widely been used to strengthen the quadriceps and hamstrings muscles, and co-activation of the quadriceps and hamstrings could affect stabilization of the knee and movement. Therefore, identifying lunges that facilitate balanced activation of the quadriceps and hamstrings might be beneficial in knee joint injury prevention and stabilization of movement. Purpose: this study was to examine the co-activation of the quadriceps and hamstrings during multiple planes of lunges. Methods: There were twelve healthy collegiate individuals volunteered to participate in this study (age 20.7 ± 1.4 yrs, height 174.6 ± 3.9 cm, weight 68.8 ± 8.5 kg). Surface EMG signals were collected by five Delsys Trigno sensors at 1000 Hz. Sensors were placed on rectus femoris, vastus lateralis, vastus medialis, biceps femoris, semitendinosus of the dominant leg. One-way ANOVA with repeated measures was used to exam the differences in biomechanical parameters of the lower limb muscle activations during multiple planes of lunges. Results: The muscle co-activation ratios (Q:H) are calculated as mean quadriceps activation divided by mean hamstring activations during movement. The quadriceps activation and knee extensor moment of side lunge was greater than other two lunge exercises, the hamstrings activation of reverse lunge during descending phase and ascending was greater than other two lunge, The Q:H ratios of reverse lunge was smaller than other two lunge exercises. Discussion: A resulting Q:H ratio equal or close to 1.0 indicates a more balanced muscle activation. The smaller Q:H ratio (close to 1.0) during descending phase of reverse lunge could be peculated that reverse lunge was a more hamstring dominant exercise than other two lunge exercises. A significant greater Q:H ratio of side lunges could indicate that a stronger quadriceps muscle activation was existed and tended to lead to greater stresses on the knee joints.

    中文摘要 i 英文摘要 iii 謝誌 v 目次 vii 表次 x 圖次 xi 第壹章 緒論 1 第一節 問題背景 1 第二節 研究假設 3 第三節 研究範圍與限制 4 第四節 名詞操作型定義 5 第貳章 文獻探討 6 第一節 下肢關節動態穩定的訓練模式 6 第二節 下肢神經肌肉共同活化的重要性 9 第三節 弓箭步對下肢的影響 12 第四節 文獻總結 15 第參章 研究方法 16 第一節 研究對象 16 第二節 實驗儀器與設備 16 第三節 實驗流程與說明 27 第四節 資料處理 30 第五節 統計分析 34 第肆章 結果 35 第一節 受試者基本資料 35 第二節 股四頭肌與腿後肌肌肉活化 35 第三節 膝關節伸膝力矩 41 第四節 肌肉活化比 42 第伍章 討論 43 第一節 各肌肉肌電振幅 43 第二節 不同弓箭步在股四頭肌及腿後肌的活化狀態 44 第三節 不同弓箭步在膝關節伸膝例舉的差異 45 第四節 不同弓箭步的股四頭肌與腿後肌比值差異 46 第陸章 結論與建議 48 第一節 結論 48 第二節 建議 48 引用文獻 49 附錄一 55

    Margareta. N & Victor H. F. (2003)。骨骼肌肉系統基礎生物力學。(林燕慧、鄭智修、魏鴻文,譯)。台北:人民衛生出版社。(原著第四版出版於2013年)

    Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, S. P., Bojsen Møller, F., & Dyhre Poulsen, P. (2000).

    Antagonist muscle coactivation during isokinetic knee extension. Scandinavian journal of medicine & science in sports, 10(2), 58-67.

    Alkjær, T., Simonsen, E. B., Magnusson, S. P., Aagaard, H., & Dyhre-Poulsen, P. (2002). Differences in the movement pattern of a forward lunge in two types of anterior cruciate ligament deficient patients: copers and non-copers. Clinical Biomechanics, 17(8), 586-593.

    Alkjær, T., Wieland, M. R., Andersen, M. S., Simonsen, E. B., & Rasmussen, J. (2012). Computational modeling of a forward lunge: towards a better understanding of the function of the cruciate ligaments. Journal of anatomy, 221(6), 590-597.

    Aune, A. K., Nordsletten, L., Skjeldal, S., Madsen, J. E., & Ekeland, A. (1995). Hamstrings and gastrocnemius co-contraction protects the anterior cruciate ligament against failure: An in vivo study in the rat. Journal of Orthopaedic Research, 13(1), 147-150.

    Ayotte NW., Stetts DM., Keenan G., Greenway EH. (2007). Electromyo-graphical analysis of selected lower extremity muscles during 5 unilateral weight-bearing exercises. Journal of orthopaedic & sports physical therapy, 37(2):48-55.

    Baratta, R., Solomonow, M., Zhou, B. H., Letson, D., Chuinard, R., & D'ambrosia, R. (1988). Muscular coactivation The role of the antagonist musculature in maintaining knee stability. The American journal of sports medicine, 16(2), 113-122.

    Begalle, R. L., DiStefano, L. J., Blackburn, T., & Padua, D. A. (2012). Quadriceps and hamstrings coactivation during common therapeutic exercises. Journal of athletic training, 47(4), 396-405.

    Beynnon, B., Howe, J. G., Pope, M. H., Johnson, R. J., & Fleming, B. C. (1992). The measurement of anterior cruciate ligament strain in vivo. International orthopaedics, 16(1), 1-12.

    Boden, B.P., Dean, G.S., Feagin, J.A., & Garrett, W.E. (2000). Mechanisms of anterior cruciate ligament injury. Orthopedics, 23, 573–578.

    Chappell, J. D., Creighton, R. A., Giuliani, C., Yu, B., & Garrett, W. E. (2007). Kinematics and electromyography of landing preparation in vertical stop-jump risks for noncontact anterior cruciate ligament injury. The American journal of sports medicine, 35(2), 235-241.

    Clark, R. A., Bryant, A. L., & Reaburn, P. (2006). The acute effects of a single set of contrast preloading on a loaded countermovement jump training session. The Journal of Strength & Conditioning Research, 20(1), 162-166.

    Cook, G. (2001). High-performance sports conditioning. Champaign, Illinois.

    Comfort, P., Jones, P. A., Smith, L. C., & Herrington, L. (2015). Joint kinetics and kinematics during common lower limb rehabilitation exercises. Journal of athletic training, 50(10), 1011-1018.

    Cronström, A., & Ageberg, E. (2014). Association between sensory function and medio-lateral knee position during functional tasks in patients with anterior cruciate ligament injury. BMC musculoskeletal disorders, 15(1), 1.

    DeMorat, G., Weinhold, P., Blackburn, T., Chudik, S., & Garrett, W. (2004). Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. The American journal of sports medicine, 32(2), 477-483.

    Draganich, L. F., Jaeger, R. J., & Kralj, A. R. (1989). Coactivation of the hamstrings and quadriceps during extension of the knee. The journal of bone and joint surgery American, 71(7), 1075-1081.

    Ekstrom, R. A., Donatelli, R. A., & Carp, K. C. (2007). Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. Journal of orthopaedic & sports physical therapy, 37(12), 754-762.

    Escamilla, R. F., Fleisig, G. S., Zheng, N., Barrentine, S. W., Wilk, K. E., & Andrews, J. R. (1998). Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Medicine and science in sports and exercise, 30(4), 556-569.

    Escamilla, R. F., Zheng, N., MacLeod, T. D., Imamura, R., Edwards, W. B., Hreljac, A., ... & Andrews, J. R. (2010). Cruciate ligament forces between short-step and long-step forward lunge. Medicine & science in sports & exercise, 42(10), 1932-42.

    Escamilla, R. F., Zheng, N., MacLeod, T. D., Imamura, R., Edwards, W. B., Hreljac, A., ... & Andrews, J. R. (2010). Cruciate ligament tensile forces during the forward and side lunge. Clinical biomechanics, 25(3), 213-221.

    Flanagan, S. P., Wang, M. Y., Greendale, G. A., Azen, S. P., & Salem, G. J. (2004). Biomechanical attributes of lunging activities for older adults. Journal of strength and conditioning research, 18(3), 599.

    Graham, V. L., Gehlsen, G. M., & Edwards, J. A. (1993). Electromyographic evaluation of closed and open kinetic chain knee rehabilitation exercises. Journal of athletic training, 28(1), 23.

    Hewett, T. E., Lindenfeld, T. N., Riccobene, J. V., & Noyes, F. R. (1999). The effect of neuromuscular training on the incidence of knee injury in female athletes a prospective study. The American journal of sports medicine, 27(6), 699-706.

    Hewett, T. E., Myer, G. D., & Zazulak, B. T. (2008). Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. Journal of science and medicine in sport, 11(5), 452-459.

    Heijne, A. N. N. E. T. T. E., Fleming, B. C., Renstrom, P. A., Peura, G. D., Beynnon, B. D., & Werner, S. U. Z. A. N. N. E. (2004). Strain on the anterior cruciate ligament during closed kinetic chain exercises. Medicine & science in sports & exercise, 36(6), 935-941.

    Holcomb, W. R., Rubley, M. D., Lee, H. J., & Guadagnoli, M. A. (2007). Effect of hamstring-emphasized resistance training on hamstring: quadriceps strength ratios. The journal of strength & conditioning research, 21(1), 41-47.

    Jönhagen, S., Ackermann, P., & Saartok, T. (2009). Forward lunge: a training study of eccentric exercises of the lower limbs. The journal of strength & conditioning research, 23(3), 972-978.

    Jonhagen S, Halvorsen K, Benoit DL (2009b) Muscle activa- tion and length changes during two lunge exercises: implications for rehabilitation. Scandinavian journal of medicine & science in sports 19, 561-568.

    Kvist J, Karlberg C, Gerdle B, Gillquist J. (2011). Anterior tibial translation during different isokinetic quadriceps torque in anterior cruciate ligament deficient and nonimpaired individuals. Journal of orthopaedic & sports physical therapy, 31: 4-15

    Kellis, E., & Kouvelioti, V. (2009). Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. Journal of electromyography and kinesiology, 19(1), 55-64.

    Myer, G. D., Ford, K. R., Foss, K. D. B., Liu, C., Nick, T. G., & Hewett, T. E. (2009). The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clinical journal of sport medicine, 19(1), 3-8.

    Myers, J. B., Pasquale, M. R., Laudner, K. G., & Sell, T. C. (2005). On-the-field resistance-tubing exercises for throwers: an electromyographic analysis. Journal of athletic training, 40(1), 15.

    Pincivero, D. M., Aldworth, C., Dickerson, T., Petry, C., & Shultz, T. (2000). Quadriceps-hamstring EMG activity during functional, closed kinetic chain exercise to fatigue. European journal of applied physiology, 81(6), 504-509.

    Palmitier RA, An KN, Scott SG, Chao YS (1991) Kinetic chain exercise in knee rehabilitation. Sports medicine 11: 402-413

    Palmieri-Smith, R. M., McLean, S. G., Ashton-Miller, J. A., & Wojtys, E. M. (2009). Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. Journal of athletic training, 44(3), 256-263.

    Romanazzi, M., Galante, D., & Sforza, C. (2015). Intralimb joint coordination of the lower extremities in resistance training exercises. Journal of Electromyography and Kinesiology, 25(1), 61-68.

    Solomonow, M., Baratta, R., Zhou, B. H., Shoji, H., Bose, W., Beck, C., & D'ambrosia, R. (1987). The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. The American Journal of Sports Medicine, 15(3), 207-213.

    Stone MH, Collins D, Plisk S, Haff G, Stone ME (2000). Training principles: evaluation of modes and methods of resistance training. Strength & conditioning journal, 22(3):65–76.

    Stuart MJ, Meglan DA, Lutz GE, Growney ES, An KN (1996). Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises. The American journal of sports medicine, 24(6):792-799.

    Shultz, S. J., Perrin, D. H., Adams, J. M., Arnold, B. L., Gansneder, B. M., & Granata, K. P., (2000). Assessment of neuromuscular response characteristics at the knee following a functional perturbation. Journal of electromyography and kinesiology, 10, 159-170.

    Signorile JF, Weber B, Roll B, Caruso JF, Lowensteyn I, Perry AC (1994). An electromyographical comparison of the squat and knee extension exercises. The journal of strength & conditioning research, 8:178 -183

    White, K. K., Lee, S. S., Cutuk, A. D. N. A. N., Hargens, A. R., & Pedowitz, R. A. (2003). EMG power spectra of intercollegiate athletes and anterior cruciate ligament injury risk in females. Medicine and science in sports and exercise, 35(3), 371-376.

    Wikstrom, E. A., Tillman, M. D., Chmielewski, T. L., & Borsa, P. A. (2006). Measurement and evaluation of dynamic joint stability of the knee and ankle after injury. Sports Medicine, 36(5), 393-410.

    下載圖示
    QR CODE