簡易檢索 / 詳目顯示

研究生: 李書宏
Shu-Hong Lee
論文名稱: 持續大量表現AtMsrB7於阿拉伯芥可增進植物對細菌性病原菌與氧化逆境之耐受度
Overexpression of methionine sulfoxide reductase B7 (AtMsrB7) in Arabidopsis enhances tolerance to pathogen infection and oxidative stress
指導教授: 王玉麒
Wang, Yu-Chie
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 131
中文關鍵詞: 阿拉伯芥軟腐病青枯病氧化逆境活性氧分子
英文關鍵詞: Arabidopsis, Methionine sulfoxide reductase B (MsrB), Methyl viologen, Erwinia carotovora ssp. carotovora (Ecc), reactive oxygen species (ROS), Ralstonia solanacearum
論文種類: 學術論文
相關次數: 點閱:220下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前人研究顯示轉殖甜椒的PFLP (plant ferredoxin-like protein) 基因,可以提昇轉殖植物對於軟腐病的抗性 (You et al., 2003)。本實驗室尚未發表的阿拉伯芥Affymatrix microarray資料則顯示,感染軟腐病菌 (Erwinia carotovora ssp. carotovora, Ecc) 之阿拉伯芥PFLP轉殖株內,MsrB7 (methionine sulfoxide reductase B7) 基因的表現量增加約10倍。本研究進一步對感染Ecc的野生型阿拉伯芥植株 (WT) 進行定量RT-PCR (Quantitative reverse transcription polymerase chain reaction, q-RT-PCR) 分析,結果也發現MsrB7基因在WT中也因Ecc感染而增加表現,本研究於是推測MsrB7可能參與植物的抗病反應機制。為驗証前述的推測,本研究選殖阿拉伯芥的MsrB7 (AtMsrB7) 基因,並藉CaMV35S啟動子之驅動,使原本主要表現於根部的MsrB7,持續大量表現於阿拉伯芥全株中,並對轉殖植株進行抗病能力的檢測。基因轉殖實驗結果顯示MsrB7轉殖株 (MsrB7OX) 對於Ecc的感染與殺草劑巴拉刈 (Methyl viologen, MV) 的處理都明顯增加耐受度,經由DAB (3,3-diamino-benzidine) 的染色結果可知,MsrB7OX轉植株內的H2O2累積量較WT對照組為低,顯示轉植株內移除ROS (reactive oxygen species) 的活性增高。比較三種ROS移除相關酵素活性的實驗結果顯示,MsrB7OX轉植株內peroxidase和thioredoxin reductase的活性明顯提升,而catalase的活性則無顯著變化。本研究也利用q-RT-PCR檢測轉殖株內各種已知與抗病相關基因的表現情形,結果發現MsrB7轉植株中,SA-dependent pathway上的基因包括NPR1、WRKY70與PR1等的表現量均有顯著增加。綜合上述實驗結果推測,持續表現MsrB7可增加植株對Ecc耐性之原因可能是藉由移除過多ROS與活化SA-dependent pathway抗病機制來達成。另外,本研究也發現轉殖株除了能耐受Ecc的處理之外,亦能耐受青枯病菌 (Ralstonia solanacearum) 的感染。因此持續表現MsrB7基因,可提高植物對氧化逆境及至少兩種細菌病害的多重耐性。

    Previous studies showed that Arabidopsis transformed with sweet pepper ferredoxin-like protein (PFLP) gene exhibited a resistance to Ecc (Erwinia carotovora ssp. carotovora) infection (You et al., 2003). Subsequent unpublished microarray analyses of theses transgenic plants found the transcripts of methionine sulfoxide reductase B7 (AtMsrB7) increased over ten folds upon Ecc infection. Our results of quantitative reverse transcription-polymerase chain reaction (q-RT-PCR) analysis to wild-type Arabidopsis had showed that MsrB7 transcript was primarily present in the roots and its expression would significantly increase after bacterial challenge. To investigate the function of MsrB7, transgenic Arabidopsis plants overexpressing MsrB7 (MsrB7OX) have been generated, and these transformants did exhibit substantial tolerance to Ecc infection. Moroever, DAB staining revealed that after pathogen and methyl violgen (MV) treatment, MsrB7OX plants accumulated less hydrogen peroxide than the wild type. Two ROS-removal enzymes, including peroxidase and thioredoxin reductase, displayed higher activities in MsrB7OX than that in the wild-type plants. Furthermore, several genes involved in the SA-dependent pathway, such as NPR1, WRKY70, and PR1 were up-regulated in the MsrB7OX plants from q-RT-PCR analysis . According to these results, we suggest that overexpression of MsrB7 in Arabidopsis might enhance the tolerance to Ecc infection via elimination of the hyperproduction of ROS and activation of the SA-dependent pathway in plant defense mechanism. We also observed that MsrB7OX could resist Ralstonia solanacearum infection. Thus, our data suggest that overexpression of MsrB7 in Arabidopsis could enhance transfenic plants tolerance to oxidative stress, and lead to the tolerance to the infection of at least two bacterial pathogens.

    中文摘要 1 英文摘要 3 前言 4 表一、病原菌相關蛋白質的分類 15 表二、阿拉伯芥的MsrB蛋白質 15 材料與方法 16 一、阿拉伯芥MsrB7基因選殖 16 阿拉伯芥total RNA之純化 16 RNA電泳分析 17 反轉錄聚合酶連鎖反應 18 純化PCR產物片段 19 選殖載體構築 20 大腸桿菌(E. coli)勝任細胞的製備 20 細菌的轉型作用(Transformation) 21 以鹼性溶菌法 (Alkaline method) 快速萃取質體DNA 22 限制酵素反應 23 Binary vector的構築 23 Gateway system 23 農桿菌 (Agrobacteria) 勝任細胞的製備 26 農桿菌的轉型方法 (Transformation) 27 二、MsrB7基因轉殖阿拉伯芥 27 阿拉伯芥基因轉殖 27 轉殖阿拉伯芥的篩選 29 阿拉伯芥DNA之純化 29 南方轉漬法 (Southern blot) 31 三、定量RT-PCR (quantitative RT-PCR) 34 四、生物性 (biotic) 與非生物性 (abiotic) 逆境處理 36 五、Hydrogen Peroxide染色 37 六、生理測試 38 七、酵素活性分析 39 八、原生質體轉殖與觀察 41 九、MsrB的胺基酸序列之比對分析 43 結果 44 MsrB7與其他MsrB家族的親緣關係 44 MsrB7在阿拉伯芥植株不同部位的表現情形 44 MsrB7在細胞內表現位置之偵測 44 MsrB7表現載體的構築與阿拉伯芥的轉殖 45 MsrB7OX轉殖株的分子鑑定 45 Ecc感染阿拉伯芥誘導MsrB7基因表現 46 MsrB7 RNAi質體之構築與阿拉伯芥之轉殖 46 B7-RNAi植株之分子鑑定 47 MsrB7OX與B7-RNAi轉殖株之外表型比較 47 MsrB7OX轉殖株的Ecc耐受測試 47 MsrB7OX轉植株內防禦相關基因的表現情形 48 MsrB7OX轉殖株能抗氧化逆境 49 MsrB7OX轉殖株會增加peroxidase與thioredoxin reductase的酵素活性 50 MsrB7OX轉殖株的青枯病菌感染實驗 51 Affymatrix microarray分析MsrB7OX轉殖株與WT中與抗病相關基因之表現情形 51 圖表 53 圖一、阿拉伯芥與水稻MsrB之親緣系統樹 53 圖二、阿拉伯芥MsrB胺基酸多序列比對結果 54 圖三、MsrB7於阿拉伯芥WT植株中不同部位的情形 55 圖四、阿拉伯芥原生質體之轉基因圖譜 56 圖五、MsrB7在細胞中主要表現於細胞質 57 圖六、阿拉伯芥轉基因圖譜 58 圖七、南方轉漬分析MsrB7OX轉植株插入的基因數目 59 圖八、MsrB7OX與WT之RT-PCR檢測基因表現之情形 60 圖九、MsrB7可被Ecc誘導表現 61 圖十、以q-RT-PCR偵測WT與B7-RNAi植株中內生MsrB7的表現量 62 圖十一、轉殖株之表現型 63 圖十二、植株鮮重 64 圖十三、MsrB7OX轉殖株有延遲開花的現象 65 圖十四、MsrB7OX轉殖阿拉伯芥與WT,感染Ecc八小時 66 圖十五、MsrB7OX轉殖阿拉伯芥與WT,感染Ecc五天 67 圖十六、MsrB7OX轉殖株抵抗病原菌,WT與B7-RNAi均出現明顯病徵 68 圖十七、在正常生長條件下,與病原菌入侵相關基因的表現情形 69 圖十八、NPR1、WRKY70與PR1之表現情形 70 圖十九、ERF1、PDF 1.2a與Thi2.1之表現情形 72 圖廿、WRKY33之表現情形 74 圖廿一、PR3與PR4幾丁質分解酶之表現情形 75 圖廿二、PR5之表現情形 76 圖廿三、利用DAB染色偵測植株處理Ecc後,H2O2的累積情形 77 圖廿四、MsrB7OX轉殖株可耐受20 μM MV處理 78 圖廿五、利用DAB染色偵測植株處理MV後,H2O2的累積情形 79 圖廿六、peroxidease與thioredoxin reductase之酵素活性 80 圖廿七、catalase之酵素活性 81 圖廿八、MsrB7OX轉殖株可抵抗青枯病菌感染 82 表三、利用Affymatrix microarray分析植株中,與抵抗病原菌相關基因表現之情形 83 表四、利用Affymatrix microarray分析植株中,與ROS移除和調控開花相關基因表現之情形 86 表五、q-RT-PCR與RT-PCR之引子對 87 討論 88 MsrB7主要表現於細胞質與植物的根部 88 持續表現MsrB7可增加植物移除ROS的能力,植物藉由移除ROS而提高對氧化逆境與病原菌入侵的耐受度 89 MsrB7可能參與植物ROS的移除機制 91 MsrB7基因的表現會受到病原菌的高度誘導 92 MsrB7OX轉殖株內可迅速誘發SA-dependent pathway的抗病機制 92 MsrB7OX轉殖株內誘發SA-independent pathway的抗病機制較不顯著 94 MsrB7OX可同時活化NPR1-dependent pathway與NPR1-independent pathway 94 MsrB7OX轉殖株內抗病相關基因與ROS移除相關基因表現量上升 95 MsrB家族可能有功能重覆性 96 MsrB7OX轉殖株可耐受至少2種病原細菌的感染 96 持續表現MsrB7會使阿拉伯芥延遲開花 96 MsrB7在育種方面的應用性 97 參考文獻 99 附錄一、培養基配方 107 附錄二、原生質體轉型 110 附錄三、MsrB基因家族專一性引子區域圖 112 附錄四、MsrB7 cDNA與胺基酸序列 113 附錄五、MsrB7啟動子序列。 114 附錄六、MsrB7與pCAMBIA1390/35S載體的建造圖 115 附錄七、B7-RNAi載體的建造圖 116 附錄八、peroxidase胺基酸序列中Met residues的比例 117 附錄九、thioredoxin胺基酸序列中Met residues的比例 120 附錄十、catalase胺基酸序列中Met residues的比例 123 附錄十一、植物於生物與非生物逆境下的訊息傳遞網路 124 附錄十二、縮寫對照表 125 附錄十三、中英對照表 129

    Abramovitch, R.B., Anderson, J.C., and Martin, G.B. (2006). Bacterial elicitation and evasion of plant innate immunity. Nature Reviews 7, 601-611.
    Bostock, R.M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annual Review of Phytopathology 43, 545-580.
    Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
    Broekaert, W.F., Delaure, S.L., De Bolle, M.F., and Cammue, B.P. (2006). The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology 44, 393-416.
    Cabreiro, F., Picot, C.R., Friguet, B., and Petropoulos, I. (2006). Methionine sulfoxide reductases: relevance to aging and protection against oxidative stress. Annals of the New York Academy of Sciences 1067, 37-44.
    Cabreiro, F., Picot, C.R., Perichon, M., Friguet, B., and Petropoulos, I. (2009). Overexpression of methionine sulfoxide reductases A and B2 protects MOLT-4 cells against zinc-induced oxidative stress. Antioxidants and Redox Signaling 11, 215-225.
    Cheong, J.J., and Choi, Y.D. (2003). Methyl jasmonate as a vital substance in plants. Trends in Genetic 19, 409-413.
    Chiang, H.C., Lo, J.C., and Yeh, K.C. (2006). Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environmental Science and Technology 40, 6792-6798.
    Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé , D., and Van Breusegem, F. (2000a). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57, 779-795.
    Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D., and Van Breusegem, F. (2000b). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57, 779-795.
    Deak, M., Horvath, G.V., Davletova, S., Torok, K., Sass, L., Vass, I., Barna, B., Kiraly, Z., and Dudits, D. (1999). Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nature Biotechnology 17, 192-196.
    Deal, R.B., Kandasamy, M.K., McKinney, E.C., and Meagher, R.B. (2005). The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. The Plant Cell 17, 2633-2646.
    Della-Cioppa, G., Bauer, S.C., Klein, B.K., Shah, D.M., Fraley, R.T., and Kishore, G.M. (1986). Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proceedings of the National Academy of Sciences of the United States of America 83, 6873-6877.
    Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology 1, 316-323.
    Dong, X. (2004). NPR1, all things considered. Current Opinion in Plant Biology 7, 547-552.
    Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology 42, 185-209.
    Erbs, G., Silipo, A., Aslam, S., De Castro, C., Liparoti, V., Flagiello, A., Pucci, P., Lanzetta, R., Parrilli, M., Molinaro, A., Newman, M.A., and Cooper, R.M. (2008). Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chemistry and Biology 15, 438-448.
    Govrin, E.M., and Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curren Biology 10, 751-757.
    Hodges, D.M., DeLong, J.M., Forney, C.F., and Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604-611.
    Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. The Journal of Biological Chemistry 264, 13963-13966.
    Hsiao, P., Sanjaya, Su, R.C., Teixeira da Silva, J.A., and Chan, M.T. (2007). Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. Planta 225, 897-906.
    Huang, H.E., Liu, C.A., Lee, M.J., Kuo, C.G., Chen, H.M., Ger, M.J., Tsai, Y.C., Chen, Y.R., Lin, M.K., and Feng, T.Y. (2007). Resistance enhancement of transgenic tomato to bacterial pathogens by the heterologous expression of sweet pepper ferredoxin-I protein. Phytopathology 97, 900-906.
    Julie, A.E. (2000). Erwinia amylovora: the molecular basis of fireblight disease. Molecular Plant Pathology 1, 325-329.
    Kiba, A., Nishihara, M., Tsukatani, N., Nakatsuka, T., Kato, Y., and Yamamura, S. (2005). A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant and Cell Physiology 46, 1007-1015.
    Kim, S., Choi, K., Park, C., Hwang, H.J., and Lee, I. (2006). SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. The Plant Cell 18, 2985-2998.
    Kim, T.G., Baek, M.Y., Lee, E.K., Kwon, T.H., and Yang, M.S. (2008). Expression of human growth hormone in transgenic rice cell suspension culture. Plant Cell Reports 27, 885-891.
    Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5, 325-331.
    Kwon, S.J., Kwon, S.I., Bae, M.S., Cho, E.J., and Park, O.K. (2007). Role of the methionine sulfoxide reductase MsrB3 in cold acclimation in Arabidopsis. Plant and Cell Physiology 48, 1713-1723.
    Kwon, T.H., Seo, J.E., Kim, J., Lee, J.H., Jang, Y.S., and Yang, M.S. (2003). Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnology and Biochemistry 81, 870-875.
    Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal 10, 71-82.
    Li, C.W., Lee, S.H., Lee, J.T., You, S.J., Chieh, P.S., Wang, Y.C., Chan, M.T. (2009). Overexpression root-abundant MsrB genes enhance resistance to chemical-induced reactive oxygen species (ROS) in Arabidopsis. (Submitted)
    Li, J., Brader, G., Kariola, T., and Palva, E.T. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. Plant Journal 46, 477-491.
    Libault, M., Wan, J., Czechowski, T., Udvardi, M., and Stacey, G. (2007). Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Molecular Plant-Microbe Interactions 20, 900-911.
    Lin, Y.M., Chou, I.C., Wang, J.F., Ho, F.I., Chu, Y.J., Huang, P.C., Lu, D.K., Shen, H.L., Elbaz, M., Huang, S.M., and Cheng, C.P. (2008). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Molecular Plant-Microbe Interactions 21, 1261-1270.
    Lopez, R.C., and Gomez-Gomez, L. (2009). Isolation of a new fungi and wound-induced chitinase class in corms of Crocus sativus. Plant Physiology Biochemistry. (in press)
    Lorenzo, O., and Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Current Opinion in Plant Biology 8, 532-540.
    Macadam, J.W., Nelson, C.J., and Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology 99, 872-878.
    Mae, A., Montesano, M., Koiv, V., and Palva, E.T. (2001). Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Molecular Plant-Microbe Interactions 14, 1035-1042.
    McGrath, K.C., Dombrecht, B., Manners, J.M., Schenk, P.M., Edgar, C.I., Maclean, D.J., Scheible, W.R., Udvardi, M.K., and Kazan, K. (2005). Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology 139, 949-959.
    Miller, G., Shulaev, V., and Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum 133, 481-489.
    Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science 9, 490-498.
    Moran, R., and Porath, D. (1980). Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiology 65, 478-479.
    Moskovitz, J. (2005). Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochimica et Biophysica Acta 1703, 213-219.
    Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944.
    Mur, L.A., Kenton, P., Atzorn, R., Miersch, O., and Wasternack, C. (2006). The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant physiology 140, 249-262.
    Oien, D.B., and Moskovitz, J. (2008). Substrates of the methionine sulfoxide reductase system and their physiological relevance. Current Topics in Developmental Biology 80, 93-133.
    Pascual, I., Larrayoz, I.M., and Rodriguez, I.R. (2009). Retinoic acid regulates the human methionine sulfoxide reductase A (MsrA) gene via two distinct promoters. Genomics 93, 62-71.
    Pastori, G.M., and Foyer, C.H. (2002). Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiology 129, 460-468.
    Ross, A.F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340-358.
    Rouhier, N., Vieira Dos Santos, C., Tarrago, L., and Rey, P. (2006). Plant methionine sulfoxide reductase A and B multigenic families. Photosynthesis Research 89, 247-262.
    Segond, D., Dellagi, A., Lanquar, V., Rigault, M., Patrit, O., Thomine, S., and Expert, D. (2009). NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection. Plant Journal 58, 159-207
    Selitrennikoff, C.P. (2001). Antifungal proteins. Applied and Environmental Microbiology 67, 2883-2894.
    Sels, J., Mathys, J., De Coninck, B.M., Cammue, B.P., and De Bolle, M.F. (2008). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiology Biochemistry 46, 941-950.
    Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A., Tumer, N.E., Hironaka, C.M., Sanders, P.R., Gasser, C.S., Aykent, S., Siegel, N.R., Rogers, S.G., and Fraley, R.T. (1986). Engineering Herbicide Tolerance in Transgenic Plants. Science 233, 478-481.
    Sharov, V.S., and Schoneich, C. (2000). Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase. Free Radical Biology and Medicine 29, 986-994.
    Sheen, J. (2001). Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiology 127, 1466-1475.
    Shindo, C., Lister, C., Crevillen, P., Nordborg, M., and Dean, C. (2006). Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes and Development 20, 3079-3083.
    Sugio, A., Dreos, R., Aparicio, F., and Maule, A.J. (2009). The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. The Plant Cell 21, 642-654.
    Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. (2008). Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952-956.
    Taylor, N.B., Fuchs, R.L., MacDonald, J., Shariff, A.R., and Padgette, S.R. (1999). Compositional analysis of glyphosate-tolerant soybeans treated with glyphosate. Journal of Agricultural and Food Chemistry 47, 4469-4473.
    Torres, M.A., Jones, J.D., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology 141, 373-378.
    Toth, I.K., Thorpe, C.J., Bentley, S.D., Mulholland, V., Hyman, L.J., Perombelon, M.C.M., and Salmond, G.P.C. (1999). Mutation in a gene required for lipopolysaccharide and enterobacterial common antigen biosynthesis affects virulence in the plant pathogen Erwinia carotovora subsp. atroseptica. Molecular Plant-Microbe Interactions 12, 499-507.
    Toth, I.K., Newton, J.A., Hyman, L.J., Lees, A.K., Daykin, M., Ortori, C., Williams, P., and Fray, R.G. (2004). Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae. Molecular Plant-Microbe Interactions 17, 880-887.
    van Loon, L.C., and van Kammen, A. (1970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. "Samsun" and "Samsun NN". II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40, 190-211.
    Vieira Dos Santos, C., and Rey, P. (2006). Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science 11, 329-334.
    Vieira Dos Santos, C., Cuine, S., Rouhier, N., and Rey, P. (2005). The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiology 138, 909-922.
    Vogt, W. (1995). Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radical Biology and Medicine 18, 93-105.
    Wang, D., Amornsiripanitch, N., and Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. Plosntds Pathogens 2, e123.
    Weigel, R.R., Pfitzner, U.M., and Gatz, C. (2005). Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. The Plant Cell 17, 1279-1291.
    Wubben, M.J., Jin, J., and Baum, T.J. (2008). Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Molecular Plant-Microbe Interactions 21, 424-432.
    Xu, L., Menard, R., Berr, A., Fuchs, J., Cognat, V., Meyer, D., and Shen, W.H. (2009). The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant Journal 57, 279-288.
    Yip, M.K., Huang, H.E., Ger, M.J., Chiu, S.H., Tsai, Y.C., Lin, C.I., and Feng, T.Y. (2007). Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (PFLP) in transgenic plants. Plant Cell Reports 26, 449-457.
    You, S.J., Liau, C.H., Huang, H.E., Feng, T.Y., Prasad, V., Hsiao, H.H., Lu, J.C., and Chan, M.T. (2003). Sweet pepper ferredoxin-like protein (PFLP) gene as a novel selection marker for orchid transformation. Planta 217, 60-65.
    Zhang, X., and Mou, Z. (2009). Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant Journal 57, 302-312.
    Zheng, Z., Qamar, S.A., Chen, Z., and Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal 48, 592-605.
    Zhou, J., Zhang, H., Yang, Y., Zhang, Z., Zhang, H., Hu, X., Chen, J., Wang, X.C., and Huang, R. (2008). Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. Journal of Experimental Botany 59, 645-652.

    下載圖示
    QR CODE