研究生: |
游筑翔 Yu, Chu-Hsiang |
---|---|
論文名稱: |
三氮二氧配位之高自旋非血基質{FeNO}7錯合物的一氧化氮活化反應 Nitric Oxide Activation within High-Spin Non-Heme {FeNO}7 Complexes with N3O2 Ligand |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | 高自旋非血基質含一氧化氮之鐵錯合物 、一氧化氮活化 、過氧化亞硝酸根離子 |
英文關鍵詞: | High-spin non-heme iron-nitrosyl complex, Nitric oxide activation, Peroxynitrite |
論文種類: | 學術論文 |
相關次數: | 點閱:121 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
延續本實驗室先前開發之五配位二價鐵錯合物Fe(BDPP) (1) 的反應活性,與一氧化氮反應產生高自旋非血基質之{FeNO}7錯合物Fe(NO)(BDPP) (1-NO)。透過配位基上修飾拉電子基調整鐵金屬中心的電子密度,使一氧化氮在錯合物上能有更好的穩定性,由原先錯合物1-NO只在-100 °C下穩定,到錯合物Fe(NO)(BDPBrP) (2-NO)、Fe(NO)(BDPCF3P) (3-NO) 可以在10、20 °C下穩定。我們利用同位素 (15NO) 標記、電子順磁共振光譜及理論計算電子自旋多重態的比較確認一氧化氮鐵錯合物的生成。另外,也探討在Fe(BDPBrP) 錯合物上可生成過氧化亞硝酸根離子的結果。
To extend the reactivity study of our previously developed five-coordinated iron(II) complex, Fe(BDPP) (1), and the reaction with nitric oxide generating high-spin non-heme {FeNO}7 complex, Fe(NO)(BDPP) (1-NO), ligand modifications 1-NO were carried out. By adding electron withdrawing functional groups, the redox potentials were tuned for better stability of nitrosyl complexes. 1-NO can only be stable at temperature below -100 °C, while modified Fe(NO)(BDPBrP) (2-NO) and Fe(NO)(BDPCF3P) (3-NO) can be stable at temperatures around 10 and 20 °C, respectively. Further, we confirmed the nitrosyl complexes by isotope (15NO) labeling experiments, spin multiplicity investigation by EPR spectra and density function theory. The formation of peroxynitrite on Fe(BDPBrP) complex was also explored.
1. Wasser, I. M.; de Vries, S.; Moënne-Loccoz, P.; Schröder, I.; Karlin, K. D. Chem. Rev. 2002, 102, 1201–1234.
2. (a) Yokoyama, A.; Han, J. E.; Cho, J.; Kubo, M.; Ogura, T.; Siegler, M. A.; Karlin, K. D.; Nam, W. J. Am. Chem. Soc. 2012, 134, 15269–15272. (b) Goldstein, S.; Lind, J.; Merényi, G. Chem. Rev. 2005, 105, 2457–2470.
3. Moënne-Loccoz, P. Nat. Prod. Rep. 2007, 24, 610–620.
4. Hino, T.; Matsumoto, Y.; Nagano, S.; Sugimoto, H.; Fukumori, Y.; Murata, T.; Iwata, S.; Shiro, Y. Science 2010, 330, 1666.
5. Matsumura, H.; Hayashi, T.; Chakraborty, S.; Lu, Y.; Moënne-Loccoz, P. J. Am. Chem. Soc. 2014, 136, 2420–2431.
6. Lu, T.-T.; Chen, C.-H.; Liaw, W.-F. Chem. Eur. J. 2010, 16, 8088–8095.
7. Speelman, A. L.; Lehnert, N. Angew. Chem. Int. Ed. 2013, 52, 12283–12287.
8. Jiang, Y.; Hayashi, T.; Matsumura, H.; Do, L. H.; Majumdar, A.; Lippard, S. J.; Moënne-Loccoz, P. J. Am. Chem. Soc. 2014, 136, 12524–12527.
9. (a) Radi, R. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4003. (b) Kalyanaraman, B. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11527.
10. Tran, N. G.; Kalyvas, H.; Skodje, K. M.; Hayashi, T.; Moënne-Loccoz, P.; Callan, P. E.; Shearer, J.; Kirschenbaum, L. J.; Kim, E. J. Am. Chem. Soc. 2011, 133, 1184–1187.
11. Kumar, P.; Lee, Y.-M.; Park, Y. J.; Siegler, M. A.; Karlin, K. D.; Nam, W. J. Am. Chem. Soc. 2015, 137, 4284–4287.
12. Chiang, C.-W.; Kleespies, S. T.; Stout, H. D.; Meier, K. K.; Li, P.-Y.; Bominaar, E. L.; Que, L., Jr.; Münck, E.; Lee, W.-Z. J. Am. Chem. Soc. 2014, 136, 10846–10849.
13. Lee, W.-Z.; Chiang, C.-W.; Lin, T.-H.; Kuo, T.-S. Chem. Eur. J. 2011, 18, 50–53.
14. 楊于凡,國立臺灣師範大學化學研究所碩士論文,2014.
15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.D.; Farkas,Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
16. Miller, F. A.; Wilkins, C. H. Anal. Chem. 1952, 24, 1253–1294.
17. Shao, Y.-Q.; Du, C.-W.; Shen, Y.-Z.; Ma, F.; Zhou, J.-M. Chin J. Anal. Chem. 2014, 42, 747–752.
18. (a) Pellegrino, J.; Bari, S. E.; Bikiel, D. E.; Doctorovich, F. J. Am. Chem. Soc. 2010, 132, 989–995. (b) Patra, A. K.; Dube, K. S.; Sanders, B. C.; Papaefthymiou, G. C.; Conradie, J.; Ghosh, A.; Harrop, T. C. Chem. Sci. 2012, 3, 364–369.
19. Lu, T.-T.; Weng, T.-C.; Liaw, W.-F. Angew. Chem. Int. Ed. 2014, 53, 11562–11566.
20. Skodje, K. M.; Williard, P. G.; Kim, E. Dalton Trans. 2012, 41, 7849–7851.