簡易檢索 / 詳目顯示

研究生: 林俊良
Chun-Liang Lin
論文名稱: 運用昆拉赫振盪量測局域功函數及研究其與電子結構之相互作用
Gundlach Oscillation on the Local Work Function Measurements and Its Interplay with the Electronic Structures
指導教授: 蘇維彬
Su, Wei-Bin
傅祖怡
Fu, Tsu-Yi
張嘉升
Chang, Chia-Seng
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 144
中文關鍵詞: 昆拉赫震盪功函數電子結構掃描穿隧能譜術薄膜碳六十
英文關鍵詞: Gundlach oscillation, work function, electronic structures, STS, thin film, C60
論文種類: 學術論文
相關次數: 點閱:322下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用掃描穿隧能譜術可以探測高於真空能階之後的電子結構,包括穿透共振與昆拉赫震盪都可以於能譜中顯現。在銀薄膜於矽(111)7×7表面與金(111)表面的量測中發現昆拉赫震盪的峰值強度會隨著區域的不同而有所差異,這個差異是源自於各區域對電子的穿透率不同所產生,因而可以被運用來解析介面及表面的結構。另一個具有一般性的現象也在實驗中被觀察到,那就是即便昆拉赫震盪強度是具有局域性的差異,其總強度是守恒的,此外,藉由量測銀(100)表面的昆拉赫震盪,證明了塊材的能帶結構在某個表面上的投影是與穿透背景相關的。同時,藉由觀察銀薄膜在金屬基材上的穿透共振可以了解穿透共振會受到介面電子結構的影響,其發生與介面電子結構是否具有「類能隙特徵」有很大的關連性。另一方面,觀察銀/金(111)、銀/銅(111)與鈷/銅(111)三個系統的昆拉赫震盪,我們證實了薄膜與基底間的功函差異並非最低階峰值的能量平移,反而應該是存在於高階中的固定能量平移,因此高階的昆拉赫震盪可運用於精確地量測薄膜的功函數,故可用來量測具有量子井態的鉛島之震盪的功函數,從六層到十五層的實驗結果中發現其量測到的震盪形式與先前理論計算的結果相當吻合,由於鉛是一層一層地成長,我們發現功函數的增減與鉛島中已佔據的量子井態增減相關。最後,同樣是藉由掃描穿隧能譜術,碳六時薄膜在金屬基材上從費米能階到超過真空能階的電子結構被清楚地解析出來,結果顯示除了一般熟知的最低未填滿分子軌域加一(LUMO+1)及加二(LUMO+2)之外,一些額外與「超級原子分子軌域」相關的次能帶也顯現出來,甚至是在超過真空能階之後,我們認為碳六十分子薄膜的電子軌域之極限應該不是真空能階,而是電子游離能。此外,我們也發現能譜中在超過游離能之後的額外特徵,此特徵應該是屬於電子受到分子薄膜干涉的結果。

    When the electronic structure beyond the vacuum level of a metal film is probed by scanning tunneling spectroscopy (STS), both transmission resonance (TR) and Gundlach oscillation can be revealed in the tunneling spectrum. It is shown that the spectral intensity of the Gundlach oscillation can vary with observed location on a Ag/Si(111)7×7 surface and a reconstructed Au(111) surface. The variation can naturally be attributed to the local change of electron transmissivity and can be use to reveal the interface or surface structures. A general phenomenon is also observed that the total intensity in the range of the Gundlach oscillation is conserved, although its intensity distribution is location dependent. By inspecting the Gundlach oscillation on the Ag(100) surface, it is demonstrated that the transmission background can be correlated to the projected bulk band structure. Meanwhile, the observation of TR in the silver thin film on metal substrates shows that the occurrence of TR may depend on the band-gap feature found in the electronic structure at the interface. On the other hand, by observing Gundlach oscillations on Ag/Au(111), Ag/Cu(111), and Co/Cu(111) systems, we demonstrate that the work function difference is not the energy shift of the lowest order but the ones of higher order where a constant energy shift exhibits. Higher order Gundlach oscillations can thus be applied to determine the work function of thin metal films precisely. Therefore, it can be applied to reveal the oscillatory work function with thickness for the Pb islands possessed of quantum well states. The undulation of the work function is consistent with the theoretical calculations for a thickness from 6 to 15 atomic layers. While the island is grown layer-by-layer, it is found that the work function decreases (increases) whenever one (two) subband is added to the occupied states of the island. Finally, by means of STS, the electronic structures of C60 thin film on metal substrates are analyzed from Fermi level to above vacuum level. The results show that in addition to LUMO+1 and LUMO+2, several subbands related to the superatom molecular orbitals (SAMOs) appear validly at the energy even higher than the vacuum levels. We suggest that the limitation of the molecular orbitals should be dominated by the ionization energy of C60 rather than the work function. Besides, an extra feature existed at the energy over the ionization energy is found and should refer to the electron interferometry by the C60 thin film.

    Abstract Ch1 Introduction 1 Reference 17 Ch2 Experimental Details 21 2.1 Principle of scanning tunneling microscopy(STM) 21 2.2 Local density of states (LDOS) and scanning tunneling spectroscopy(STS) 23 2.3 Operation modes in STM and STS 26 2.4 The experimental setup and procedure 29 Reference 31 Ch3 Principles of Gundlach Oscillation and Transmission Resonance 33 3.1 Gundlach oscillation: the electronic structure in the tunneling gap 35 3.2 Transmission resonance 41 Reference 46 Ch4 Interplay between Transmission Background and Gundlach Oscillation in Scanning Tunneling Spectroscopy 47 4.1 Emergence of interface structures via Gundlach oscillation 52 4.2 Position-sensitive Gundlach oscillation: a tool to reveal the surface nanostructures 57 4.3 The relationship between transmission background and the projected band structure of solid surface 64 4.4 Interface-determinate transmission resonance on metal substrates 68 Reference 78 Ch5 Manifestation of the local work function difference in higher order Gundlach Oscillation 81 5.1 Work function of Ag thin film on Au(111) and Cu(111) surfaces 85 5.2 Work function variation from different stacking: Co islands on Cu(111) surface 96 5.3 Work function oscillation of Pb quantum islands on Cu(111) surface 99 5.4 Discussion for the work function oscillation of Pb quantum islands 108 Reference 112 Ch6 The Electronic Structures of C60 Thin Films on Metal Substrates 115 6.1 The molecular orbital of C60 on different substrates 119 6.2 Transmission resonance in C60 films 126 6.3 Stark effect for molecular orbitals and transmission resonance on C60 thin films 133 Reference 138 Ch7 Conclusion 141

    Ch1 Reference

    [1] T.-C. Chiang, Surf. Sci. Rep. 39, 181 (2000)
    [2] B. J. Jonker, N. C. Bartelt, and R. L. Park, Surf. Sci. 127, 183 (1983)
    [3] M. Jałochowski, H. Knoppe, G. Lilienkamp, and E. Bauer, Phys. Rev. B 46, 4693 (1992)
    [4] R. Shankar, Principles of Quantum Mechanics (Plenum Press, New York, 1994)
    [5] W. F. Chung, Y. J. Feng, H. C. Poon, C. T. Chan, S. Y. Tong and M. S. Altman, Phys. Rev. Lett. 90, 216105 (2003)
    [6] M. S. Altman, J. Phys.: Condens. Matter 22, 084017 (2010)
    [7] A.L. Wachs, A.P. Shapiro, T.C. Hsieh, T.-C. Chiang, Phys. Rev. B 33, 1460 (1986)
    [8] S. Ogawa, H. Nagano, and H. Petek, Phys. Rev. Lett. 88, 116801 (2002)
    [9] G. Hörmandinger, Phys. Rev. B 49, 13899 (1994)
    [10] J. Li, W.-D. Schneider, and R. Berndt, Phys. Rev. B 56, 7656 (1997)
    [11] W. Chen, V. Madhavan, T. Jamneala, and M. F. Crommie, Phys. Rev. Lett. 80, 1496 (1998)
    [12] J. A. Kubby and J. J. Boland, Surf. Sci. Rep. 26, 61 (1996)
    [13] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Phys. Rev. B 48, 2851 (1993)
    [14] B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev. Lett. 81, 1263 (1998)
    [15] M. Tanaka, T. Takahashi, H. Katayama-Yoshida, S. Yamazaki, M. Fujinami, Y. Okabe, W. Mizutani, M. Ono, K. Kajimura, Nature, 339, 691 (1989)
    [16] D. Eom, S. Qin, M.-Y. Chou, and C. K. Shih, Phys. Rev. Lett. 96, 027005 (2006)
    [17] T. Nishio, T. An, A. Nomura, K. Miyachi, T. Eguchi, H. Sakata, S. Lin,
    N. Hayashi, N. Nakai, M. Machida, and Y. Hasegawa, Phys. Rev. Lett. 101, 167001 (2008)
    [18] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, N. S. Wingreen, Science 280, 567 (1998)
    [19] J. T. Li, W. D. Schneider, R. Berndt, and B. Delley, Phys.Rev. Lett. 80, 2893 (1998)
    [20] A. J. Heinrich, J. A. Gupta, C. P. Lutz, D. M. Eigler, Science 306, 466 (2004)
    [21] S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Blügel, and R. Wiesendanger, Science 288, 1805 (2000)
    [22] B. C. Stipe, M. A. Rezaei, and W. Ho, Science 280, 1732 (1998)
    [23] T. Komeda, Y. Kim, Maki Kawai, B. N. J. Persson, H. Ueba, Science 295, 2055 (2002)
    [24] I. B. Altfeder, K.A. Matveev, and D. M. Chen, Phys. Rev. Lett. 78, 2815 (1997)
    [25] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen and Tien T. Tsong Phys. Rev. Lett. 86, 5116 (2001)
    [26] Y. F. Zhang, J. F. Jia, T. Z. Han, Z. Tang, Q. T. Shen, Y. Guo, Z. Q. Qiu, and Q. K. Xue, Phys. Rev. Lett. 95, 096802 (2005)
    [27] K. H. Gundlach, Solid State Electron. 9, 949 (1966).
    [28] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985)
    [29] R. S. Becker, J.A. Golovchenko, and B.S. Swartzentruber, Phys. Rev. Lett. 55, 987 (1985)
    [30] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, W. K. Hsu, Tien T. Tsong, Phys. Rev. Lett. 102, 196102 (2009)
    [31] H. Liu, J. Yan, H. Zhao, S. Gao, and D. M. Chen, Phys. Rev. B 76, 113403 (2007)
    [32] K. Bobrov, A. J. Mayne, and G. Dujardin, Nature 413, 616 (2001)
    [33] W. B. Su, S. M. Lu, H. T. Shih, C. L. Jiang, C. S. Chang, and T.T. Tsong, J. Phys.: Condens. Matter 18, 6299 (2006)
    [34] J. A. Kubby, Y. R. Wang, and W. J. Greene, Phys. Rev. Lett. 65, 2165 (1990)
    [35] S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. S. Vita, and W.D. Schneider, Phys. Rev. Lett. 87, 276801 (2001)
    [36] M. Pivetta, F. Patthey, M. Stengel, A. Baldereschi, and W.D. Schneider, Phys. Rev. B 72, 115404 (2005).
    [37] L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 045414 (2006)
    [38] C. M. Wei and M. Y. Chou, Phys. Rev. B 66, 233408 (2002)
    [39] L.Y. Ma, L. Tang, Z. L. Guan, K. He, K. An, X. C. Ma, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett. 97, 266102 (2006)
    [40] Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao and Q. K. Xue, Science 306, 1915 (2004)
    [41] D. Eom, S. Qin, M.Y. Chou and C. K. Shih, Phys. Rev. Lett. 96, 027005 (2006)
    [42] Y. Jia, B. Wu, H. H. Weitering, and Z. Zhang, Phys. Rev. B 74, 035433 (2006)
    [43] Y. Qi, X. Ma, P. Jiang, S. Ji, Y. Fu, J. F. Jia, Q. K. Xue, S. B. Zhang, Appl. Phys. Lett. 90, 013109 (2007)
    [44] T. Miller, M.Y. Chou, and T.-C. Chiang, Phys. Rev. Lett. 102, 236803 (2009)
    [45] J. F. Jia, K. Inoue, Y. Hasegawa, W. S. Yang, T. Sakurai, Phys. Rev. B 58, 1193 (1998).
    [46] M. Becker and R. Berndt, Appl. Phys. Lett. 96, 033112 (2010)
    [47] J. Y. Leea and J. H. Kwon, Appl. Phys. Lett. 86, 063514 (2005)
    [48] C. T. Tseng, Y.H. Cheng, M. C. M. Lee, C. C. Han, C. H, Cheng, and Y. T. Tao, Appl. Phys. Lett. 91, 233510 (2007)
    [49] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa, Appl. Phys. Lett. 82, 25 (2003)
    [50] X.H. Zhang, B. Domercq, and B. Kippelena, Appl. Phys. Lett. 91, 092114 (2007)
    [51] M. Feng, J. Zhao, and H. Petek, Science 320, 359 (2008)

    Ch2 Reference

    [1] Richard L. Liboff, Introductory Quantum Mechanics (Addison Wesley, New York, 1980)
    [2] C. Julian Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, New York, 1993)
    [3] J.A. Stroscio, R.M. Feenstra and A.P. Fein, Phys. Rev. Lett. 57, 2579 (1986)
    [4] E. Meyer, H. J. Hug, R. Bennewitz, Scanning Probe Microscopy (Springer, Berlin, 2004)
    [5] Chunli Bai, Scanning Tunneling Microscopy and Its Application (Springer, Berlin, 1995)
    [6] J. A. Kubby and J. J. Boland, Surf. Sci. Rep. 26, 61 (1996)
    [7] O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys. Rev. Lett. 92, 057202 (2004)

    Ch3 Reference

    [1] S. Schuppler, N. Fischer, Th. Fauster, and W. Steinmann, Phys. Rev. B 46, 13539 (1992)
    [2] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985)
    [3] W. B. Su, S. M. Lu, H. T. Shih, C. L. Jiang, C. S. Chang, and T.T. Tsong, J. Phys.: Condens. Matter 18, 6299 (2006)
    [4] K. H. Gundlach, Solid State Electron. 9, 949 (1966).
    [5] J. J. Sakurai, Mordern Quantum Mechanics (Addison Wesley, New York, 1994)
    [6] R.C. Jaklevic, J. Lambe, Phys. Rev. B 12, 4146 (1975)
    [7] A.L. Wachs, A.P. Shapiro, T.C. Hsieh, T.-C. Chiang, Phys. Rev. B 33, 1460 (1986)
    [8] B. J. Jonker, N. C. Bartelt, and R. L. Park, Surf. Sci. 127, 183 (1983)
    [9] I. B. Altfeder, K.A. Matveev, and D. M. Chen, Phys. Rev. Lett. 78, 2815 (1997)
    [10] Richard L. Liboff, Introductory Quantum Mechanics (Addison Wesley, New York, 1980)

    Ch4 Reference

    [1] K. H. Gundlach, Solid State Electron. 9, 949 (1966).
    [2] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985)
    [3] R. S. Becker, J.A. Golovchenko, and B.S. Swartzentruber, Phys. Rev. Lett. 55, 987 (1985)
    [4] P. Wahl, M. A. Schneider, L. Diekhöner, R. Vogelgesang, and K. Kern, Phys. Rev. Lett. 91, 106802 (2003)
    [5] J. A. Kubby, Y. R. Wang, and W. J. Greene, Phys. Rev. Lett. 65, 2165 (1990)
    [6] W. B. Su, S. M. Lu, H. T. Shih, C. L. Jiang, C. S. Chang, and T.T. Tsong, J. Phys.: Condens. Matter 18, 6299 (2006)
    [7] Richard L. Liboff, Introductory Quantum Mechanics (Addison Wesley, New York, 1980)
    [8] M. Sanche, G. Bader, and L. G. Caron, J. Chem. Phys. 76, 4016 (1982)
    [9] B. T. Jonker, N. C. Bartelt, and R. L. Park, Surf. Sci. 127, 183 (1983)
    [10] W. F. Chung, Y. J. Feng, H. C. Poon, C. T. Chan, S. Y. Tong and M. S. Altman, Phys. Rev. Lett. 90, 216105 (2003)
    [11] The transmissivity is the probability of electron transmission. The correlation between the transmissivity and the spectral intensity of the transmission background is not clear, and we therefore use “equivalent” to temporarily represent their correlation.
    [12] A. Thanailakis, J. Phys. C 8, 655 (1975)
    [13] C. Woll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys. Rev. B 39, 7988 (1989)
    [14] W. Chen, V. Madhavan, T. Jamneala, and M. F. Crommie, Phys. Rev. Lett. 80, 1496 (1998)
    [15] W. E. McMahon, E. S. Hirschorn, and T.-C. Chiang, Surf. Sci. 279, L231 (1992)
    [16] W. B. Jian, W. B. Su, C. S. Chang, and T. T. Tsong, Phys. Rev. Lett. 90, 196603 (2003)
    [17] K. Bobrov, A. J. Mayne, and G. Dujardin, Nature 413, 616 (2001)
    [18] S. Schuppler, N. Fischer, Th. Fauster, and W. Steinmann, Phys. Rev. B 46, 13539 (1992)
    [19] R. C. Jaklevic and L. C. Davis, Phys. Rev. B 26, 5391 (1982)
    [20] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985)
    [21] N. D. Lang, Phys. Rev. B 34, 5947 (1986)
    [22] R. S. Becker, J.A. Golovchenko, and B.S. Swartzentruber, Phys. Rev. Lett. 55, 987 (1985)
    [23] W. B. Su, S. M. Lu, C. L. Jiang, H. T. Shih, C. S. Chang, and T. T. Tsong, Phys. Rev. B 74, 155330 (2006)
    [24] T. Miller, A. Samsavar, G.E. Franklin, T.-C. Chiang, Phys. Rev. Lett. 61 1404 (1988)
    [25] P. T. Sprunger, E. lagsgaard, and F. Besenbacher, Phys. Rev. B 54, 8163 (1996)
    [26] R. Otero, A. L. Va´zquez de Parga, and R. Miranda, Phys. Rev. B 66, 115401 (2002)
    [27] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, W. K. Hsu, Tien T. Tsong, Phys. Rev. Lett. 102, 196102 (2009)

    Ch5 Reference

    [1] M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett 58, 2921 (1991)
    [2] S. Kitamura and M. Iwatsuki, Appl. Phys. Lett. 72, 3154 (1998)
    [3] T. Filleter, K. V. Emtsev, Th. Seyller, and R. Bennewitz, Appl. Phys. Lett. 72, 133117 (2008)
    [4] N. D Lang, Phys. Rev. B 37, 10395 (1988)
    [5] D. B. Dougherty, P. Maksymovych, J. Lee, and J. T. Yates, Jr., Phys. Rev. Lett 97, 236806 (2006)
    [6] S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. S. Vita, and W.D. Schneider, Phys. Rev. Lett. 87, 276801 (2001)
    [7] M. Pivetta, F. Patthey, M. Stengel, A. Baldereschi, and W.D. Schneider, Phys. Rev. B 72, 115404 (2005).
    [8] L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 045414 (2006)
    [9] C. Woll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys. Rev. B 39, 7988 (1989)
    [10] W. E. McMahon, E. S. Hirschorn, and T.-C. Chiang, Surf. Sci. 279, L231 (1992)
    [11] A. L. Vázquez de Parga, F. J. García-Vidal, and R. Miranda, Phys. Rev. Lett. 85, 4365 (2000)
    [12] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985)
    [13] J. A. Kubby, W.J. Greene, Phys. Rev. B 48, 11249 (1993)
    [14] J. I. Pascual, C. Corriol, G. Ceballos, I. Aldazabal, H.-P. Rust, K. Horn, J. M. Pitarke, P. M. Echenique, and A. Arnau, Phys. Rev. B 75, 165326 (2007)
    [15] L. Limot, T. Maroutian, P. Johansson, and R. Berndt, Phys. Rev. Lett. 91, 196801 (2003)
    [16] W. B. Su, S. M. Lu, C. L. Jiang, H. T. Shih, C. S. Chang, and T. T. Tsong, Phys. Rev. B 74, 155330 (2006)
    [17] N.V. Smith, Phys. Rev. B 32, 3549 (1985)
    [18] E. V. Chulkov, V. M. Silkin, and P. M. Echenique., Surf. Sci. 437, 330 (1999)
    [19] W. Wallauer, and Th. Fauster, Surf. Sci. 331, 731 (1995)
    [20] L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 045414 (2006)
    [21] A. L. Vázquez de Parga, F. J. García-Vidal, and R. Miranda, Phys. Rev. Lett. 85, 4365 (2000)
    [22] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen and Tien T. Tsong Phys. Rev. Lett. 86, 5116 (2001)
    [23] Y. F. Zhang, J. F. Jia, T. Z. Han, Z. Tang, Q. T. Shen, Y. Guo, Z. Q. Qiu, and Q. K. Xue, Phys. Rev. Lett. 95, 096802 (2005)
    [24] J. J. Paggel, T. Miller, and T.-C. Chiang, Science 283, 1709 (1999)
    [25] R. K. Kawakami, E. Rotenberg, H. J. Choi, E. J. Escorcia-Aparico, M. O. Bowen, J. H. Wolfe, E. Arenholz, Z. D. Zhang, N. V. Smith, and Z. Q. Qiu, Nature, 398 132 (1999)
    [26] A. Mans, J. H. Dil, A. R. H. F. Ettema, and H. H. Weitering, Phys. Rev. B 66, 195410 (2002)
    [27] I. B. Altfeder, K. A. Matveev, and D. M. Chen, Phys. Rev. Lett. 78, 2815 (1997)
    [28] D. Wegner, A. Bauer, and G. Kaindl, Phys. Rev. Lett. 94, 126804 (2005)
    [29] W. B. Su, C. S. Chang, T. T. Tsong, J. Phys. D: Appl. Phys. 43 013001 (2010)
    [30] M. Jalochowski, and E. Bauer, Phys. Rev. B 38, 5272 (1988)
    [31] D. Eom, S. Qin, M.-Y. Chou, and C. K. Shih, Phys. Rev. Lett. 96, 027005 (2006)
    [32] A. Crottini, D. Cvetko, L. Floreano, R. Gotter, A. Morgante and
    F. Tommasini, Phys. Rev. Lett. 79, 1527 (1997)
    [33] Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, and Q. K. Xue, Science 306 1915 (2004)
    [34] Y. S. Fu, S. H. Ji, X. Chen, X. C. Ma, R. Wu, C. C. Wang,W. H. Duan, X. H. Qiu, B. Sun, P. Zhang, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett. 99, 256601 (2007)
    [35] Y. F. Zhang, Z. Tang, T. Z. Han, X. Ma, J. F. Jia, Q. K. Xue, K. Xun, S. C. Wu, Appl. Phys. Lett. 90, 093120 (2007)
    [36] C. L. Lin, S. M. Lu, W. B. Su, H. T. Shih, B. F. Wu, Y. D Yao, C. S. Chang, and T. T. Tsong, Phys. Rev. Lett. 99, 216103 (2007)
    [37] Y. Jia, B. Wu, H. H. Weitering, and Z. Zhang, Phys. Rev. B 74, 035433 (2006)
    [38] Y. Qi, X. Ma, P. Jiang, S. Ji, Y. Fu, J. F. Jia, Q. K. Xue, S. B. Zhang, Appl. Phys. Lett. 90, 013109 (2007)
    [39] C. M. Wei and M. Y. Chou, Phys. Rev. B 66, 233408 (2002)
    [40] J. A. Kubby, Y. R. Wang, and W. J. Greene, Phys. Rev. Lett. 65, 2165 (1990)
    [41] W. B. Su, S. M. Lu, H. T. Shih, C. L. Jiang, C. S. Chang, and T.T. Tsong, J. Phys.: Condens. Matter 18, 6299 (2006)
    [42] S. M. Lu, H. T. Shih, C. L. Jiang, W. B. Su, C. S. Chang, and T. T. Tsong, Chin. J. Phys. (Taipei) 44, 309 (2006)
    [43] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, W. K. Hsu, Tien T. Tsong, Phys. Rev. Lett. 102, 196102 (2009)
    [44] R.C. Jaklevic, J. Lambe, Phys. Rev. B 12, 4146 (1975)
    [45] R. C. Jaklevic, J. Lambe, M. Mikkor and W. C. Vassell, Phys. Rev. Lett. 26, 88 (1971).
    [46] K. Horn, B. Reihl, A. Zartner, D. E. Eastman, K. Hermann and J. Noffke, Phys. Rev. B 30, 1711 (1984).
    [47] F. K. Schulte, Surf. Sci. 55, 427 (1976).

    Ch6 Reference

    [1] C. Silien, N. A. Pradhan, and W. Ho, P. A. Thiry, Phys. Rev. B 69, 115434 (2004)
    [2] J. Y. Leea and J. H. Kwon, Appl. Phys. Lett. 86, 063514 (2005)
    [3] R. Hesper, L.H. Tjeng and G.A. Sawatzky, Europhys. Lett. 40, 177 (1997)
    [4] X.-Y. Zhu, G. Dutton, D. P. Quinn, C. D. Lindstrom, N. E. Schultz, and D. G. Truhlar, Phys. Rev. B 74, 241401(R) (2006)
    [5] W. W. Pai, H. T. Jeng, C. M. Cheng, C. H. Lin, X. Xiao, A. Zhao, X. Zhang, G. Xu, X. Q. Shi, M. A. Van Hove, C. S. Hsue, and K. D. Tsuei, Phys. Rev. Lett. 104 036103 (1988)
    [6] M. Grobis, X. Lu, and M. F. Crommie, Phys. Rev. B 66, 161408 (2002)
    [7] H. F. Wang, Master Thesis of Materials Science and Engineering, National Dong Hwa University, (Taiwan) (2007)
    [8] G. Dutton and X.-Y. Zhu, J. Phys. Chem. B 106, 5975 (2002)
    [9] X.-Y. Zhu, G. Dutton, D. P. Quinn, C. D. Lindstrom, N. E. Schultz, and D. G. Truhlar, Phys. Rev. B 74, 241401(R) (2006)
    [10] M. Feng, J. Zhao, and H. Petek, Science 320, 359 (2008)
    [11] T. Huang, J. Zhao, M. Feng, H. Petek, S. Yang, and L. Dunsch, Phys. Rev. B 81, 085434 (2010)
    [12] K. –D. Tsuei, J. –Y. Yuh, C. -T. Tzeng, R. -Y. Chu, S. -C. Chung, and K. –L. Tsang, Phys. Rev. B 56, 15412 (1997)
    [13] A. V. Pogulay, R. R. Abzalimov, S. Nasibullaev, A. S. Lobach, T. Drewello and Y. V. Vasil’ev, Int. J. Mass Spectrom. 233, 165 (2004)
    [14] D.L. Lichtenberger, K.W. Nebesny, C. D. Ray, D. R. Huffman and L. D. Lamb, Chem. Phys. Lett. 176, 203 (1991)
    [15] C.-T. Tzeng, W.-S. Lo and J.-Y. Yuh, R.-Y. Chu and K.-D. Tsuei, Phys. Rev. B 61, 2263 (2000)
    [16] J. D. McNeill, R. L. Lingle, Jr., R. E. Jordan, D. F. Padowitz, and C. B. Harris, J. Chem. Phys. 105, 3883 (1996)
    [17] H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi, Phys. Rev. B 77, 075413 (2008)
    [18] J. A. Kubby, Y. R. Wang, and W. J. Greene, Phys. Rev. Lett. 65, 2165 (1990)
    [19] J. J. Paggel, T. Miller, and T.-C. Chiang, Science 283, 1709 (1999)
    [20] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985)
    [21] L. Limot, T. Maroutian, P. Johansson, and R. Berndt, Phys. Rev. Lett. 91, 196801 (2003)
    [22] J. Kröger, L. Limot, H. Jensen, R. Berndt, and P. Johansson, Phys. Rev. B 70, 033401 (2004)
    [23] S. Ogawa, S. Heike, H. Takahashi, and T. Hashizume, J. Appl. Phys. 101, 09G504 (2007) S. Ogawa, S. Heike, H. Takahashi, and T. Hashizume, Phys. Rev. B 75, 115319 (2007)
    [24] W. B. Su, S. M. Lu, C. L. Jiang, H. T. Shih, C. S. Chang, and T. T. Tsong, Phys. Rev. B 74, 155330 (2006)
    [25] S. Wehrli, E. Koch, and M. Sigrist, Phys. Rev. B 68, 115412 (2003)

    下載圖示
    QR CODE