研究生: |
曾國銘 Tseng, Kuo-Ming |
---|---|
論文名稱: |
探討金屬氧化物的支撐物對乙醇蒸氣重組反應的影響 Investigation of the effect of metal oxide supporters on ethanol steam reforming reaction |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 乙醇蒸氣重組 、氧化鈰 、鈣鈦礦 |
英文關鍵詞: | Oxidative Steam Reforming of Ethanol, CeO2, BaZrO3 |
論文種類: | 學術論文 |
相關次數: | 點閱:174 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們將 Rh、Ru兩種金屬分別附著在三種不同金屬氧化支撐上,來進行氧化乙醇蒸氣重組反應,而這三種氧化支撐物分別為,氧化鈰 (CeO2)、參雜了Dy的鈣鈦礦結構(Dy-doped BaZrO3) 和鈣鈦礦結構(BaZrO3)。透過XRD、EDX、TPR探討金屬與金屬氧化物是否符合。在乙醇蒸氣重組實驗中,使用不同氧氣量的條件下乙醇對氧氣比例為2~0.4、不同乙醇與水莫爾比例(1:1、1:3、1:5、1:7、1:10)及不同的溫度(300℃~600℃)來進行實驗。在催化劑中金屬的部分,我們發現Rh、Ru有助於C-C鍵斷裂,產生CO與CO2。在催化劑中支撐物的部分,我們選擇了螢石結構(CeO2)、鈣鈦礦結構(Dy-doped BaZrO3) 和鈣鈦礦結構(BaZrO3)有效的利用環境中氧氣與水,其中氧化鈰對氧具有高活性,在乙醇與莫爾比例為1:3,乙醇對氧氣比例在0.61,氫氣產率為72%,而鈣鈦礦結構(Dy-doped BaZrO3)與鈣鈦礦結構(BaZrO3)可以有效利用水,促使催化劑效能提升及氫氣產率提升,在乙醇與莫爾比例為1:10,乙醇對氧氣比例在0.58,氫氣產率為86%,所以可以看出BZDy及BZO比在氧的氧化鈰下具有更好的在乙醇氧化蒸氣重組反應中具有重要的影響。在乙醇蒸氣反應後,將催化劑進行XRD、EDX、TPO鑑定,在XRD鑑定與反應前並沒有差異,在EDX、TPO發現鈣鈦礦結構(Dy-doped BaZrO3)含碳量大於氧化鈰(CeO2) ,但在長時間反應中卻能維持高乙醇轉換及氫氣產率。
In this present work, we studied oxidative steam reforming of ethanol (OSRE) on the catalysts of Rh and Ru supported on CeO2, Dy-doped BaZrO3 (BZDy) and BaZrO3 (BZO). The samples were initially characterized by XRD,EDX and TPR and followed by the reforming experiments with various C/O Ratio: 2 to 0.4, Ethanol/ H2O molar ratios (1:1,1:3,1:5,1:7,1;10) and temperatures (300℃~600℃) to elucidate the effects from oxygen and steam on OSRE. Both Rh and Ru are well known for their superior capability of C-C bond cleavage and the main products from OSRE are CO and CO2 for all sample. Supports of CeO2, BZDy and BZO, on the other hand, have different specialties for oxygen and steam. CeO2 is highly active for oxygen and further improves OSRE performance at higher oxygen contents. Its best H2 yield 72% in ethanol/H2O=1:3, C/O Ratio: 0.61. BZDy and BZO have excellent activity for steam and enhance the hydrogen production in OSRE at higher steam contents. Its best good H2 yield 86% in ethanol/H2O=1:10, C/O Ratio: 0.58. Additionally, the enhancement from steam in BZDy and BZO-based catalysts are better than that from oxygen in CeO2-related catalysts, indicating that steam plays an more important role to improve OSRE performance. The post-experimental samples were also examined by XRD,EDX and TPO to identify the stability of those samples. The EDX and TPO results found that BZDy and BZO-based materials have more carbon deposition though their long-term stability were as good as CeO2-based catalysts.
1.Piscina, P. R.; Homs, N., Use of biofuels to produce hydrogen Chemical Society Reviews 2008, 37, 2459-2467
2.Salge, J.R.; Deluga, G.A.; Schmidt, L.D., Catalytic partial oxidation of ethanol over noble metal catalysts Journal of Catalysis 2005, 235, 69-78
3.Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuels 2005, 19, 2098-2106
4.Hung, C.C.; Chen, S.L; Liao, Y.K; Chen, C.H; Wang, J.H, Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3. International Journal of Hydrogen Energy 2012, 37, 4955-4966.
5.Hua Song, Umit S. Ozkan*, Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. Journal of Catalysis 2009 , 261,66-74
6.H. Wanga, b, Y.Liua,*, L. Wanga, Y.N. Qina, Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst. Chemical Engineering Journal 2008, 145,25-31
7.F. Frusteri*, S. Freni, V. Chiodo, S. Donato, G. Bonura, S. Cavallaro, Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. International Journal of Hydrogen Energy 2006, 31,2193-2199
8.Profeti LPR, Ticianelli EA, Assaf EM. Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals. Int J Hydrogen Energy 2009, 34, 5049-5060.
9.J.P. Breen, R. Burch*, H.M. Coleman, Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental 2002, 39. 65-74
10.Maria A. Goula, Sotiria K. Kontou, Panagiotis E. Tsiakaras*, Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst. Applied Catalysis B: Environmental 2004, 49,135-144
11.Rodriguez JA, Graciani J, Evans J, Park JB, Yang F, Stacchiola D, et al. Wateregas shift reaction on a highly active inverse CeOx/Cu(111) catalyst: unique role of ceria nanoparticles. Angew Chem Int Ed 2009, 48,8047-8050.
12.Xu Y, Greeley J, Mavrikakis M. Effect of subsurface oxygen on the reactivity of the Ag(111) surface. J Am Chem Soc 2005, 127,12823-128227.
13.Sheng P-Y, Bowmaker GA, Idriss H. The reactions of ethanol over Au/CeO2. Appl Catal A 2004, 261,171-181.
14.Jian-Mei Li, Fei-Yang Huang, Wei-Zheng Weng*, Xiao-Qing Pei, Chun-Rong Luo, Hai-Qiang Lin, Chuan-Jing Huang, Hui-Lin Wan*, Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation to synthesis gas. Catalysis Today 2008, 131,179-187
15.S. Cavallaro, V. Chiodo, S. Freni,N. Mondello, F. Frusteri*, Performance of Rh/Al2O3 catalyst in the steam freforming of ethanol: H2 production for MCFC. Applied Catalysis A: General 2003, 249,119-128
16.Iulianelli A, Longo T, Liguori S, Seelam PK, Keiski RL, Basile A. Oxidative steam reforming of ethanol over Ru/Al2O3 catalyst in a dense Pd-Ag membrane reactor to produce hydrogen for PEM fuel cells. Int J Hydrogen Energy 2009, 34,8558-8565.
17.Cai W, Wang F, Zhan E, Veen ACV, Mirodatos C, Shen W. Hydrogen production from ethanol over Ir/CeO2 catalysts: a comparative study of steam reforming, partial oxidation and oxidative steam reforming. J Catal 2008, 257,96-107.
18.Laosiripojana, N, Assabumrungrat, S, and Charojrochkul, S, Steam reforming of ethanol with co-fed oxygen and hydrogen over Ni on high surface area ceria support. Applied Catalysis A: General 2007, 327, 180-188
19.Srisiriwat, Nawadee, Therdthianwong, Supaporn, and Therdthianwong, Apichai, Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2. International Journal of Hydrogen Energy 2009, 34 2224-2234
20.Biswas, Prakash and Kunzru, Deepak, Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chemical Engineering Journal 2008, 136,41-49
21.Aupretre, Fabien, Descorme, Claude, and Duprez, Daniel, Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications 2002, 3, 263-267
22. Fatsikostas, Athanasios N. and Verykios, Xenophon E., Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis 2004, 225, 439-452
23.M.C. S#westeur034#nchez-S#westeur034#nchez, R.M. Navarro*, J.L.G. Fierro, Ethanol steam reforming over Ni/MxOy–Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy 2007, 32, 1462-1471
24.Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S,et al. H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts.Catal Comm 2004, 5,611-615.
25.G. A. Deluga.;J. R. Salge.; L. D. Schmidt.;X. E. Verykios., Renewable Hydrogen from Ethanol by Autothermal Reforming. Science 2004, 303, 993-997
26.Anamika Srivastava.;Pant KK., Oxidative Steam Reforming of Bioethanol over Rh/CeO2-Al2O3 Catalyst for Hydrogen Production. J Thermodyn Catal 2013, 4,119
27.Adriana M. da Silva.,Lisiane V. Mattos.,John Mu´nera.,Eduardo Lombardo.,Fabio B. Noronha.,Laura Cornaglia., Study of the performance of Rh/La2O3–SiO2 and Rh/CeO2 catalysts for SR of ethanol in a conventional fixed-bed reactor and a membrane reactor. International Journal of Hydrogen Energy 2015, 40,4154-4166
28.Diagne C, Idriss H, Pearson K, Gomez-Garcia MA, Kiennemann A,Efficient hydrogen production by ethanol reforming over Rh catalysts effect of addition of Zr on CeO2 for the oxidation of CO to CO2. C.R.Chim 2004, 7,617-622.
29.Erdohelyi A, Rasko J, Kecskes T, Toth M, Domok M, Baan K. Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal Today 2006, 116,367-76.
30.Ines A. Carbajal Ramos, Tiziano Montini, Barbara Lorenzut, Horacio Troiani, Fabiana C. Gennari,Mauro Graziani, Paolo Fornasiero, Hydrogen production from ethanol steam reforming on M/CeO2/YSZ(M=Ru,Pd,Ag) nanocomposites. Catalysis Today 2012, 180 ,96-104
31.Islam, M. S.; Slater, P. R.; Tolchard, J. R.; Dinges, T., Doping and defect association in AZrO3 (A =Ca, Ba) and LaMO3 (M=Sc, Ga) perovskite-type ionic conductors. Dalton Trans 2004, 3061-3066.
32.HAILE, S. M.; STANEFF, G.; RYU, K. H., Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. JOURNAL OF MATERIALS SCIENCE 2001, 36, 1149-1160.
33.Kreuer, K. D., PROTON-CONDUCTING OXIDES. Annu. Rev. Mater. Res 2003, 33, 333-359.
34.Islam, M. S., Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 2000, 10, 1027-1038.
35.簡綉雲,利用實驗與計算解釋三價離子參雜於電解質BaZrO3的導電趨勢 國立臺灣師範大學化學系 碩士論文 2011
36.黃偉峰,探討三價離子摻雜於電解質BaZrO3的導電趨勢 國立臺灣師範大學化學系 碩士論文 2012
37.Ziqing Wang, Benyao Liu, Jianxin Lin., Highly effective perovskite-type BaZrO3 supported Ru catalyst for ammonia synthesis. Applied Catalysis A: General 2013, 458,130-136
38.Tengfei Hou, Bo Yu, Shaoyin Zhang, Tongkuan Xu, DazhiWang, Weijie Cai., Hydrogen production from ethanol steam reforming over Rh/CeO2 catalyst Catalysis Communications 2015, 58,137-140
39.Nageswara Rao Peela, Deepak Kunzru., Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor. International Journal of Hydrogen Energy 2011, 36, 3384-3396
40.G.C.Mondrag#westeur052#n Rodr#westeur046#guez, Y. G#westeur055#n#westeur061#ll#westeur061#, Davide Ferri, Arnim Eyssler,Eugenio Otal, B. Saruhan. Phase transitions of BaTi0.9Rh0.1O3d perovskite-type oxides under reducing environments. Materials Research Bulletin 2014, 61, 130–135
41.Dae Han Kim,Jae Layng Park, Eun Ji Park, Young Dok Kim,Sunghyun Uhm., Dopant Effect of Barium Zirconate-Based Perovskite-Type Catalysts for the Intermediate-Temperature Reverse Water Gas Shift Reaction. ACS Catal. 2014, 4, 3117-3122
42.Saito, Y. U.S. Patent 8540898, 2013.
43.李欣瑜, 鎳與鈣鈦礦結構氧化物BaMO3 (M=Ti、Zr、Hf) 催化劑對二氧化碳甲烷化反應的影響 國立交通大學應用化學系 碩士論文 2012
44.P. Viparelli, P. Villa, F. Basile, F. Trifiro, A. Vaccari, P. Nanni, M. Viviani, Catalyst based on BaZrO3 with different elements incorporated in the structure II.BaZr(1-x)RhxO3 systems for the production of syngas by partial oxidation of methane. Applied Catalysis A: General. 2005, 280, 225-232
45.Benedetta de Caprariis, Paolo De Filippis, Antonietta Petrullo, Marco Scarsella, Methane Dry Reforming over Nickel Perovsikite Catalysts. Chemical Engineering Transactions,2015,43, 2283-2288
46.Ted Johansson, Devendra Pakhare, Daniel Haynes, Victor Abdelsayed, Dushyant Shekhawat, James Spivey, Characterization of LaRhO3 perovskites for dry (CO2) reforming of methane (DRM). Chemical Papers,2014,68,1240-1247
47.Sandeep K. Chawla, Milka George, Femina Patel, Sanjay Patel, Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts, Procedia Engineering,2013,51,461-466
48.Muhammad Bilal,S. David Jackson., Catal. Sci. Technol, 2013, 3, 754-766