簡易檢索 / 詳目顯示

研究生: 邱千鳳
論文名稱: 利用掃描探針顯微鏡探測二氧化鈦奈米粒子
Observation od TiO2 Nano-particles by Scanning Probe Microscopy
指導教授: 傅祖怡
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 142
中文關鍵詞: 原子力顯微鏡二氧化鈦真空潛弧法
英文關鍵詞: atomic force microscope, titanium dioxide, arc-submerged nanoparticle synthesis system
論文種類: 學術論文
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗目的在利用原子力顯微鏡(Atomic Force Microscopy, AFM)探測二氧化鈦奈米粒子的形貌;二氧化鈦粒子由台北科技大學所研發的改良式真空潛弧法(Arc-Submerged Nanoparticle Synthesis System, ASNSS)製備,製備出的奈米流體由不同的介電液收集著。筆者採取不同的取樣法與乾燥法,觀察奈米粒子在矽基底與銅/矽基底上是否有不同的聚集或分散行為;接著利用原子力顯微鏡本身內建軟體,分析粒子的尺寸。
    利用原子力顯微鏡大氣系統在觀測上的優勢是:易於操作(不需抽真空)、解析度高,可看到樣品表面形貌與粗糙度,搭配分析軟體可作尺寸測量、grain分析與統計、三維顯示……等。但是缺點在於真空度不佳,對於樣品表面的乾淨度不易維持,所以欲達原子層級解析有困難,另外,取一張圖所需的時間長。
    實驗結果顯示,排除原子解析度不可達的限制,原子力顯微鏡協助我們觀察TiO2奈米粒子在不同取樣方式的呈現結果,的確對我們的取樣方法的優缺判斷有其貢獻。合適的取樣方法標準是,以AFM影像掃瞄結果判斷:一為在微米尺度下(大尺度)粒子分佈均勻,而即使在小於微米尺度(奈米尺度)下有團簇行為依然是可以被接受的取樣方法;二為判斷粒子的尺寸大小是否為奈米粒子,即粒子徑度與高度均在100nm以下;或是形成的團簇粒子尺寸在微米以下,而且幾乎是均勻大小的尺寸。

    This experimental purpose is to utilize an atomic force microscopy(AFM)to survey the morphology of titanium dioxide (TiO2) nanoparticles. The TiO2 sample is manufactured by an arc-submerged nanoparticle synthesis system (ASNSS) which was researched and developed by Prof. Ho Chang’s group of National Taipei University of Technology. The TiO2 nanoparticles were collected in different dielectric liquids using the arc-submerged nanoparticle synthesis method. I adopt different ways in sampling and drying to observe TiO2 nanoparticles in silicon and copper / silicon substrates whether or not have different gathering or dispersing behaviors. Then AFM software was used to analyze the size of the TiO2 nanoparticles.
    The advantages of AFM in air system are to operate easier than in high vacuum system, observe the morphology and roughness of sample surface, use analytic software to measure size, grain analysis and statistic, 3-dimension display, etc… But the shortcoming lies in the atomic resolution is unachieved because of low vacuity, hardly to maintain the clean of surface. Besides, it is cost much time to get an image.
    The experimental results show that AFM images are helpful to distinguish the best ways of sampling and drying in that TiO2-distribution on Si and Cu/Si substrates. For example, in micrometer scale, one way that made the particles distributing uniformly on substrates even that formed clusters. The other way is to judge the size of the particles which are in nanometer, here defines the diameter of nanoparticles under 100nm, or the formed clusters under micrometer size that are uniform.

    中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 vi 表格目錄 v Chapter 1 緒論 13 1.1 奈米材料樣品製備與特性 13 1.1.1 奈米粒子的性質[3-5] 13 1.1.2 奈米半導體的特性[3,8] 14 1.1.3 奈米粒子的製備方式[3]15 1.1.4 奈米粒子的穩定度-電雙層原理(Electric Double Layer Theory) 15 1.1.5 二氧化鈦簡介 18 1.2 研究動機 20 Chapter 2 實驗儀器構造與原理簡介 23 2.1 原子力顯微鏡 (Atomic force microscopy, AFM) 23 2.1.1 基本原理 24 2.1.2 操作模式分類 26 2.1.3 依讀取的數據種類作區分 27 2.2 靜電力顯微鏡(Electrostatic Force Microscope, EFM) 28 2.2.1 二次路徑掃描 29 2.2.2 基本測量原理 29 2.2.3 電力顯微鏡測量原理 30 2.3 改良式真空潛弧法(Arc-Submerged Nanoparticle synthesis System, ASNSS) 32 2.3.1 儀器設備簡介 33 2.3.2 放電加工原理 35 2.3.3 最佳製程參數 37 Chapter 3 實驗方法與數據 39 3.1 樣品製備方法 39 3.1.1 基底種類 40 3.1.2 鋪覆上各種取樣條件的二氧化鈦 40 Chapter 4 實驗結果與討論 42 4.1 AFM掃描不同取樣方法樣品的粒子分佈情形與均勻程度 42 4.1.1 自然乾燥法與不同取樣方式的關係 42 4.1.2 Ar氣吹乾與不同取樣方式的關係 81 4.1.3 旋轉方式乾燥 92 4.1.4 基底:矽(Si)與銅/矽(Cu/Si)的比較 103 4.2 不同取樣方法樣品的AFM影像粒徑分析 114 4.2.1 TiO2(H2O)/ Cu/Si,基底45度傾角浸入溶液,自然乾燥 114 4.2.2 TiO2(H2O+乙二醇)/Si,基底45度傾角浸入溶液,自然乾燥 115 4.2.3 TiO2(水+乙二醇)/Cu/Si,基底45度傾角浸入流體,自然乾燥 16 4.2.4 TiO2(乙二醇)/Si ,基底45度傾角浸入流體,自然乾燥 117 4.2.5 TiO2(H2O)/ Cu/Si ,滴管滴定取樣,Ar氣乾燥 118 4.2.6 TiO2(H2O)/Cu/Si,基底45度傾角浸入流體,Ar氣乾燥 120 4.2.7 Si基底 122 4.2.8 Cu/ Si基底 123 4.2.9 Cu/ TiO2/Si基底 126 4.2.10 計算團簇顆粒組成粒子數與表面積的試算法 127 4.3 取樣方法總比較 129 4.3.1 乾燥法:自然乾燥與Ar氣乾燥的比較 129 4.3.2 取樣法:滴管取樣與基底斜浸入流體取樣的比較 131 4.3.3 介電液:水、乙二醇與兩者1:1混合液的比較 133 4.3.4 基底:矽基底(Si)與 銅/矽基底(Cu/Si)的比較 136 4.4 EFM影像 138 Chapter 5 結論與未來展望 140 參考資料 142

    1. Amy L. Linsebigler, Guangqan Lu, and John T. Yates, Jr., ‘Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results’, Chem. Rev. 1995,95,735-758
    2. Ulrike Diebold, ‘The surface science of titanium dioxide’, surface science reports 48, 2003, 53-229
    3. 高濂、鄭珊、張青紅著,奈米光觸媒,五南書局,2004
    4. 樊美公等著,光化學基本原理與光子學材料科學,北京科學出版社,2001
    5. 張立德,牟季美著,奈米材料和奈米結構,北京科學出版社,2001
    6. Hayashi S., Kon R., Ichiyama Y., et al. Phys. Rev. Lett. 1998, 60, 1085-1088
    7. Rossetti R., Hull R., Gibson J. M., et al. J. Chem.Phys. 1985, 82, 552-559
    8. 林振華等編譯,奈米科技全書,全華科技
    9. NT-MDT Corp., SPM introduction, http://www.ntmdt.ru
    10. Fujihira, M., Annu. Rev. Mater. Sci., 1999, 29, 353-380
    11. Martin, Y., Wickramashinghe, H. K., Appl. Phys. Lett., 1987, 50, 1455-1457.
    12. Jacobs, H. O., Knapp, H. F., Muller, S., Stemmer, A., Ultramicroscopy, 1997, 69, 39-49
    13. Leng, Y., Williams, C. C., Colloid Surface A, 1994, 93, 335-341
    14. 林詩傑,碩士論文,台北科技大學
    15. Ho Chang, Ching-Song Jwo, Chih-Hung Lo, Chaochin Su, Tsing-Tshih Tsung, Liang-Chia Chen, Hong-Ming Lin and Mu-jung Kao,“Process development and photocatalytic property of nanofluid prepared by combined ASNSS,” Materials Science and Technology, Vol.21, No.6, 2005, pp.671-677 (SCI)
    16. 陳竹南著,放電加工原理與加工技術,建宏書局,台北,p1-21,1976
    17.Lee,L.C.,Lim,L.C.,Narayanan,V.,andVenkatesh,v.C.,”QuantificationofSurface Damage of Tool Steels after EDM ”, Tools Manufact. Vol. 28, No.4,pp.354-372,

    QR CODE