簡易檢索 / 詳目顯示

研究生: 張家豪
論文名稱: 高溫高壓下超導體二硼化鎂的臨界電流密度與X光近緣吸收光譜之研究
The study of the critical current density and the X-ray Absorption Near Edge Structure (XANES) of hot-pressed MgB2 Superconductor
指導教授: 張秋男
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 75
中文關鍵詞: 臨界電流密度磁滯曲線二硼化鎂X光近緣吸收光譜畢恩模型
英文關鍵詞: Bean Model, critical current density, MgB2, XANES
論文種類: 學術論文
相關次數: 點閱:515下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們的工作為研究MgB2粉末(Alfa Aesar)在高溫與高壓下所形成之塊材。在壓力為20 kBar與加熱至溫度為900℃時得到的高溫高壓樣品,其密度約為2.36 g/cm3,接近MgB2的晶格密度2.63 g/cm3。我們利用超導量子干涉儀在外加磁場範圍為-50 kOe與+50 kOe下測量樣品的磁滯曲線,並求得臨界電流密度Jc,在溫度為10 K,外加磁場為1 tesla時,其值約為6×104 A/cm2。由X光近緣吸收光譜的測量,發現高溫高壓處理過的樣品,MgO減少了,而B2O3卻增加了。
    我們在相同的高溫高壓條件下,摻雜鎳的磁性奈米顆粒,看看是否能影響樣品的臨界電流密度Jc。我們以酒精混合MgB2粉末與鎳的磁性奈米顆粒,並使用超音波震盪,成功地使奈米顆粒在樣品中均勻分佈。摻雜鎳的樣品經過高溫高壓後,其臨界電流密度Jc卻變的非常不好。研究其原因,發現主要的因素並非是鎳奈米顆粒的摻雜,雖然摻雜鎳似乎還是會稍微減少樣品的臨界電流密度Jc。我們發現樣品在經過酒精中震盪後,並經過高溫高壓的過程,確實使MgO增加了。

    We report our work on the study of the bulk MgB2 prepared by hot-pressing magnesium diboride MgB2 powders (Alfa Aesar) . The hot-pressed specimen was obtained under the pressure of 20 kBar and heated up to 900℃. The density of this specimen was measured to be about 2.36 g/cm3 close to 2.63 g/cm3 of the MgB2 crystal . The hysteresis of the specimen in the magnetic field range of -50 kOe and +50 kOe was obtained by a superconducting quantum interference device (SQUID) . The critical current density Jc was about 6×104 A/cm2 for the temperature at 10 K with an applied magnetic field of 1 tesla . The hot-pressed MgB2 specimen was found to have about one order of magnitude higher Jc than MgB2 powder . The impurity of MgO was found less in the hot-pressed specimen than in the MgB2 powder , but the impurity of B2O3 was observed to increase from measured by X-ray Absorption Near Edge Spectrum (XANES).
    Nanoparticles of Ni was added into the MgB2 under the same hot-pressed condition to see if it affect Jc . The uniform distribution of nanoparticle was achieved by mixing the MgB2 powders and Ni nanoparticle in alcohol under supersonic vibration . The critical current density of Ni nanoparticle added sample became worse . The cause of it was investigated and found that the Ni nanoparticle addition was not the major cause , although it seems to decrease Jc a little . The vibration process in alcohol was found to make MgO increase after the hot-press process.

    目 錄 第一章 緒論…………………………………………….…….….…1 1-1 超導體MgB2簡介…………………………...…….……….….1 1-2 第二類超導體的基本特性……………….…….…………....4 1-3 實驗動機……………………………..…………..……………8 第二章 實驗樣品的製備……………………………..…….………9 2-1 高溫高壓儀器的工作原理……………….….……....………9 2-2 樣品的製作………………………….……….…...…………11 2-3 樣品的基本量測………………………………....…….……14 (一) 掃描式電子顯微鏡……..………....…...…..…...…14 (二) 磁化率的測量…………..…………….…...……….….22 (三) 粉末X光繞射結構測量…….....……….….……….….27 第三章 臨界電流密度的測量與結果分析……….………….…..33 3-1 Bean Model的臨界態模型…………………………...………33 3-2 臨界電流密度的結果分析…………………….………….….38 第四章 X光近緣吸收光譜的測量與結果分析………...….…….48 4-1 X光近緣吸收光譜原理………………………………………..48 4-2 X光光源與實驗裝置…………………………………………..51 4-3 高溫高壓樣品的X光近緣吸收光譜…………………….…….55 4-4 高溫高壓MgB2摻雜鎳樣品的X光近緣吸收光譜……………..63 第五章 總結…………………………………………….…….....67 5-1 實驗結果總結………………………………………………….68 5-2 未來展望……………………………………………………….70 參考資料………………………………………………………………..71 附 錄………………………………………………………………..74

    參考資料
    [1] J. Nagamatsu, N. Nakagawa, T. Zenitani, Y. Muranaka, and J. Akimitsu, Nature (London) 410, 63 (2001).

    [2] AAPPS Bulletin Vol.13,No.1, p27 (2003).

    [3] Hyoung Joon Choi, David Roundy, Hong Sun, L. Marvin, Cohen and
    Steven G. Louie, Nature 418, 758 (2002).

    [4] H. Schmidt, J.F. Zasadzinski, K.E. Gray, and D.G. Hinks, Phys. Rev. B
    63,220504 (2001).

    [5] P. Seneor,1 C.-T. Chen, N.-C. Yeh,1 R. P. Vasquez, L. D. Bell,2 C. U. Jung, Min-Seok Park, Heon-Jung Kim,W. N. Kang, and Sung-Ik Lee
    Phys. Rev. B 65, 012505 (2001).

    [6] W. N. Kang, C. U. Jung, Kijoon H. P. Kim, Min-Seok Park, S. Y. Lee, Hyeong-Jin Kim, Eun-Mi Choi, Kyung Hee Kim, Mun-Seog Kim, and Sung-Ik Lee , Appl. Phys. Lett. 79, 982 (2001).

    [7] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, Phys. Rev. Lett. 86, 1877 (2001).

    [8] J. Kortusy, I.I. Maziny, K.D. Belashchenko, V.P. Antropovz and L.L. Boyer,Phys. Rev. Lett. 86, 4656 (2001).

    [9] Cristina Buzea and Tsutomu Yamashita , Supercond. Sci. Technol. 14,
    R115–R146 (2001).

    [10] V.L. Ginzburg and L. D. Landau, Zh. Eksperim. i. Teor. Fiz. 20, 1064
    (1950).

    [11] M.Cyrot and D.Pavuna, Introduction to superconductivity and high-Tc
    materials, (1992), P29~31,P77.Word Scientific Publishing Co. Pte.Ltd.

    [12] P.Poole,Jr., A.Farach and J.Creswick,Superconductivity,(1995),P.267~P.273, P.343~P.393, Academic press,Inc.
    [13] 李之玉,張裕衡,超導物理,(1992),儒林圖書有限公司,初版.
    [14] Y. Bugoslavsky, L. F. Cohen, G. K. Perkins, M. Polichetti,
    T. J. Tate, R. Gwilliam and A. D. Caplin , Nature 411, 561 (2001).

    [15] M. Zehetmayer , M. Eisterer , J. Jun, S. M. Kazakov , J. Karpinski, B. Birajdar, O. Eibl , and H. W. Weber , Phys. Rev. B 69, 054510 (2004).

    [16] X.L. Wang, S. Soltanian , M. James , M.J. Qin , J. Horvat , Q.W. Yao ,H.K. Liu, and S.X. Dou , Physica C 408, 10 (2004).

    [17] C. H. Cheng, H. Zhang, Y. Zhao , Y. Feng , X. F. Rui, P. Munroe, H. M. Zeng , N. Koshizuka and M. Murakami , Supercond. Sci. Technol. 16, 1182–1186 (2003).

    [18] Y. Zhao,Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y.
    Fudamoto, N. Koshizuka, and M. Murakami , Appl. Phys. Lett. 79, 1154 (2001).

    [19] X. Z. Liao, A Serquis, Y. T. Zhu, L Civale, D. L. Hammon,D. E.
    Peterson, F. M. Mueller, V. F. Nesterenko and Y. Gu , Supercond. Sci.
    Technol. 16 ,799–803 (2003).

    [20] A. Serquis, L. Civale, D. L. Hammon, J. Y. Coulter, X. Z. Liao, Y. T. Zhu, D. E. Peterson, and F. M. Mueller , Appl. Phys. Lett. 82, 1754 (2003).

    [21] A. Serquis, X. Z. Liao, Y. T. Zhu, J. Y. Coulter, J. Y. Huang,
    J. O. Willis, D. E. Peterson, and F. M. Muellera) N. O. Moreno and J. D. Thompson V. F. Nesterenko and S. S. Indrakanti , Journal of Applied Physics , 92, 351 (2002).

    [22] I. K. Marmorkos , A. Matulis , and F. M. Peeters , Phys. Rev. B 53, 2677 (1996).

    [23] J. I. Martı´n, M. Vlez, J. Nogus, and Ivan K. Schuller , Phys. Rev. Lett. 79, 1929 (1997).

    [24] A. Hoffmann , P. Prieto and Ivan K. Schuller , Phys. Rev. B 61, 6958 (2000).

    [25] 鄧勃, ''分析測試數据的統計處理方法'',清華大學出版社出版(1995).
    [26] C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).

    [27] S. Jin, H. Mavoori, C. Bower and R. B. van Dover , Nature 411, 563 (2001).

    [28] S.X. Dou, X.L. Wang , J. Horvat, D. Milliken, A.H. Li, K. Konstantinov, E.W. Collings, M.D. Sumption and H.K. Liu, Physica C 361 (2001).

    [29] Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, and K. Togano, H. Kito and H. Ihara Appl. Phys. Lett. 78, 2914 (2001).

    [30] K. Muller, C. Andrikidis, H.K. Liu and S.X. Dou, Phys. Rev. B 50 ,10218 (1994).

    [31] '' EXAFS, Basic Principle and Analysis'' , edited by Boon K.Teo (Springer-Verlag 1986).

    [32] 吳良彥(2003),碩士論文,師大物理學系.
    [33] T. A. Callcott, L. Lin, G.T. Woods, G.P. Zhang, J.R. Thompson, M. Paranthaman, and D. L. Ederer, Phys. Rev. B 64, 132504 (2001).

    [34] Jin Nakamura, Nobuyoshi Yamada, Kazuhiko Kuroki, Thomas A. Callcott, David L. Ederer, Jonathan D. Denlinger, and Ruper C. C. Perera , Phys Rev. B 64, 174504 (2001).

    [35]“X-ray Spectroscopy”, B. K. Agarwal, 2nd Edition, Springer Series in Optical Sciences, Vol. 15,p144~p147, Spring-Verlag (1989).

    [36] W. A. Fietz and W. W. Webb, Phys Rev. 178, 657 (1969).

    [37] Victor Chabanenko, Roman Puzniak, Adam nabialek, Sergei Vasiliev, Vladimir Rusakov, Loh Huanqian, Ritta Szymczak, Henryk Szymczak, Jan Jun, Janusz Karpinski, and Vitaly Finkel, Journal of Low Temperature Physics.130, 175 (2003).

    [38] National Institute of Standards and Technology's web site (http://www.nist.gov/)

    QR CODE