研究生: |
林鴻穎 Lin-Hong-Ying |
---|---|
論文名稱: |
催化材料與氧氣含量對乙醇蒸氣重組反應的影響 Effects of materials and oxygen contain on ethanol reforming reaction |
指導教授: | 王禎翰 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 乙醇蒸氣重組 |
英文關鍵詞: | steam reforming |
論文種類: | 學術論文 |
相關次數: | 點閱:107 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們將有系統的研究十種金屬,(分別是 Ru 、 Rh 、 Ir 、 Co、Ni 、 Pd 、Pt 、 Cu 、 Au 和 Ag ),並將十種不同金屬分別附著在兩種不同金屬氧化支撐上,來進行氧化乙醇蒸氣重組反應,而這兩種氧化支撐物分別為,氧化鈰 (CeO2),和參雜了Dy的鈣鈦礦結構(Dy-doped BaZrO3)。在各種不同外在條件,如不同氧氣量的條件下(此篇氧氣量改變從0~40 sccm)、不同的溫度(此篇500℃~600℃)來進行實驗。這些使我們能夠了解整個乙醇蒸氣重組反應中,不同催化劑的性能以及它們對反應中所帶來的影響。在催化劑中金屬的部分,我們發現Rh、Ru、Ir這三種金屬,有助於C-C鍵斷裂,故產生最高的CO+CO2選擇率,並且有著最高的氫氣產率。 在催化劑中支撐物的部分,我們選擇了CeO2和鈣鈦礦結構(Dy-doped BaZrO3),這兩種支撐物可以分別有效的利用環境中氧氣與水,促使整個催化劑的效能提升。而其中鈣鈦礦結構(Dy-doped BaZrO3)效能提升特別明顯,是因為鈣鈦礦結構可以有效利用水,促使催化劑效能提升,所以可以看出水在乙醇蒸氣重組反應中具有重要的影響。在外在環境條件部分,我們發現增加溫度與氧氣含量,可以有效提升乙醇轉換效率、CO和CO2、氫氣產率。
In this thesis, we systematically examine the examine the oxidative steam reforming of ethanol (OSRE) on 10 metals (Ru、Rh、Ir、Co、Ni、Pd、Pt、Cu、Au and Ag) supported on two oxide (CeO2、Dy-doped BaZrO3) at various operational conditions with different O2 flows (0 ~ 40 sccm) and temperatures (500℃~600℃) to elucidate the effects from catalysts and reagents on the catalytic performance. For metallic catalysts, we found that Rh, Ru, and Ir will improve C-C bond cleavage and produce mainly CO and CO2 with the highest hydrogen yield. For oxide supporters, both CeO2 and Dy-doped BaZrO3 that have high reactivity with oxygen and water, respectively, can further improve the catalytic performance. Especially, Dy-doped BaZrO3 shows the best enhancement, indicating that water plays an more important role in OSRE. For operational condition, we found that at high temperatures and oxygen contains can both improve ethanol conversion, CO and CO2 formation, and, eventually, raise the hydrogen yield.
Key word : steam reforming
1 Navarro, R. M., Pena, M. A., and Fierro, J. L. G., Hydrogen Production Reactions from Carbon Feedstocks:??Fossil Fuels and Biomass. Chemical Reviews 107 (10), 3952 (2007).
2 Piscina, Pilar Ramirez de la and Homs, Narcis, Use of biofuels to produce hydrogen (reformation processes). Chemical Society Reviews 37 (11), 2459 (2008).
3 Salge, J. R., Deluga, G. A., and Schmidt, L. D., Catalytic partial oxidation of ethanol over noble metal catalysts. Journal of Catalysis 235 (1), 69 (2005).
4 de Lima, Sania M. et al., Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. Journal of Catalysis 257 (2), 356 (2008).
5 de Lima, Sania M. et al., Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. Journal of Catalysis 268 (2), 268 (2009).
6 Peela, Nageswara Rao and Kunzru, Deepak, Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor. International Journal of Hydrogen Energy 36 (5), 3384.
7 Peela, Nageswara Rao, Mubayi, Anamika, and Kunzru, Deepak, Steam reforming of ethanol over Rh/CeO2/Al2O3 catalysts in a microchannel reactor. Chemical Engineering Journal 167 (2??), 578.
8 Srisiriwat, Nawadee, Therdthianwong, Supaporn, and Therdthianwong, Apichai, Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2. International Journal of Hydrogen Energy 34 (5), 2224 (2009).
9 Biswas, Prakash and Kunzru, Deepak, Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chemical Engineering Journal 136 (1), 41 (2008).
10 Chen, Hongqing et al., Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chemical Engineering Journal 160 (1), 333.
11 Agus Haryanto, † Sandun Fernando, *,† Naveen Murali,† and Sushil Adhikari†, Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuels 19 (2005), 2098.
12 Liguras, Dimitris K., Goundani, Katerina, and Verykios, Xenophon E., Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts. International Journal of Hydrogen Energy 29 (4), 419 (2004).
13 Breen, J. P., Burch, R., and Coleman, H. M., Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental 39 (1), 65 (2002).
14 Song, Hua and Ozkan, Umit S., Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. Journal of Catalysis 261 (1), 66 (2009).
15 Wang, H., Liu, Y., Wang, L., and Qin, Y. N., Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst. Chemical Engineering Journal 145 (1), 25 (2008).
16 Blekkan, Philippe Bichon ‧ Gro Haugom ‧ Hilde J. Venvik ‧ Anders
98
Holmen Æ Edd A., Steam Reforming of Ethanol Over Supported Co and Ni Catalysts. Top Catal 49 (2008), 38.
17 Chen, Luwei et al., Support and alloy effects on activity and product selectivity for ethanol steam reforming over supported nickel cobalt catalysts. International Journal of Hydrogen Energy 37 (21), 16321.
18 Luca Barattinia, Gianguido Ramisa, Carlo Resinia,1, guido Buscaa,*, Michele Sisanib, Umberto Costantinob, Reaction path of ethanol and acetic acid steam reforming over Ni-Zn-Al catalysts. Flow reactor studies. Chemical Engineering Journal 153 (2009), 43.
19 Subramani Velua, 1, Kenzi Suzukia,2, Munusamy Vijayarajb, Sanmitra Barmanb, Chinnakonda S. Gopinathb,*, In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental 55 (2005), 287.
20 F. Marinoa, M. Boveria, G. Baronettib, M. Labordea,*, Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/g-Al2O3 catalysts. Effect of Ni. International Journal of Hydregen Energy 26 (2001), 665; Fagen Wang, Yong Li, Weijie Cai, Ensheng Zhan, Xiaoling Mu, Wenjie Shen*, Ethanol steam reforming over Ni and Ni-Cu catalysts. Catalysis Today 146 (2009), 31; Maria Cruz Sanchez-Sa h z, *, ‡ R f M. avarr rga,*,‡ D m r s I. K dar d s,§ ph E. V ryk s,§ a d J s L s G. F rr ‡, M ha s Aspects of the Ethanol Steam Reforming Reaction for Hydrogen Production P , , a d P Ca alys s S pp r d γ-Al O3†. J. Phys. Chem. A 114 (2010), 3873.
21 Laosiripojana, N., Assabumrungrat, S., and Charojrochkul, S., Steam reforming of ethanol with co-fed oxygen and hydrogen over Ni on high surface area ceria support. Applied Catalysis A: General 327 (2), 180 (2007).
22 Aupretre, Fabien, Descorme, Claude, and Duprez, Daniel, Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications 3 (6), 263 (2002).
23 Fatsikostas, Athanasios N. and Verykios, Xenophon E., Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis 225 (2), 439 (2004).
24 Sanchez-Sanchez, M. C., Navarro, R. M., and Fierro, J. L. G., Ethanol steam reforming over Ni/MxOy-Al2O3(M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy 32 (10-11), 1462 (2007).
25 da Silva, Adriana M. et al., The effect of space time on Co/CeO2 catalyst deactivation during oxidative steam reforming of ethanol. Catalysis Communications 11 (8), 736.
26 de Lima, Sania M. et al., Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General 377 (2010), 181.
Key word : steam reforming