簡易檢索 / 詳目顯示

研究生: 吳育倫
Yu-Lun Wu
論文名稱: 比較建模與觀測落日時的天文折射現象
Comparison of Modeled and Observed Astronomical Refraction of the Setting Sun
指導教授: 傅學海
Fu, Hsieh-Hai
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 87
中文關鍵詞: 天文折射落日折射大氣層雷文送觀測
英文關鍵詞: Astronomical Refraction, Sunset, Refraction, Atmosphere, Rawinsonde, Observe
論文種類: 學術論文
相關次數: 點閱:150下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們嘗試計算得出落日時的天文折射現象。在光線通過大氣層的過程中,它會因為受到大氣層折射的影響而使光線的路徑逐漸彎曲,這即為天文折射現象。天文折射現象的彎曲程度受到天體的仰角所影響,在天頂時最小而在地平面時最大。天文折射現象是受到空氣的密度所影響,其與空氣的溫度和壓力息息相關,為了得到大氣的垂直密度結構,我們使用中央氣象局的雷文送(無線電探空儀)傳回的大氣垂直資料。我們用來比對的落日照片是在2011年9月17日,2011年10月17日與2011年10月28日在淡水海邊所拍攝。將拍攝的落日與建模計算的落日仰角進行比對,兩者間的差異最小時是在天體仰角高度為0.749674°時,差異量為-0.70";兩者間差異量最大時是在天體仰角高度為1.387341°時,差異量為123.72"。

    關鍵字:天文折射、落日、折射、大氣層、雷文送、觀測

    In this work, we try to calculate the astronomical refraction of the setting sun. The light path from a source outside the earth’s atmosphere is a curve due to the astronomical refraction, and this curve depends on the observed location and the angle between celestial body and the horizon, especially when the celestial body is near the horizon. The astronomical refraction is influenced by the density and temperature of the vertical atmosphere structure. The CWB rawinsonde observed data is used to construct the vertical density structure of the atmosphere. The sunset images taken on the September 17, 2011, October 17, 2011 and October 28, 2011 at Tamshui, and thes images are used as comparison of model and observed astronomical refraction of the setting sun. The difference of the model and the observed setting sun in minimum is -0.70" when the un-refracted incident angle is at 0.749674º above the real horizon, in maximum is 123.72" when the un-refracted incident angle is at 1.387341º above the real horizon.

    Key Words: Astronomical Refraction, Sunset, Refraction, Atmosphere, Rawinsonde, Observe

    1 Introduction 01 2 Observation 04 3 Data Process 13  3-1 Calibrate the altitude angle of the real sun (the unfracted sun) by the photo time 13  3-2 The Central Weather Bureau (CWB) rawinsonde data 17  3-3 The refraction index of the moist air ..........18  3-4 The refraction between each layer of the atmosphere 24  3-5 The light path during the atmosphere 27 4 Result and Discussion  29 5 Conclusion 44 6 Reference 46 7 Appendix 49  7-A The CWB rawinsonde data 49  7-B The IDL source code code 60  7-C The observation without measured the real horizon. 77

    Auer L. H., “Astronomical Refraction: Conputational Method for All Zenith Angles,” AJ, 119:2472-2474 (2000).
    Attas M. and McMurry J., “Nailing the Equinox Sunrise,” JRASC, 93, 163A (1993).
    Bruton D., “Optical Determination of Atmospheric Temperature Profiles,” Ph.D. thesis (Department of Physics and Astronomy, University of Texas A&M University, 1996).
    Chen W. N., “The measurements and scattering propertites of aerosol, cirrus, and temperature between 10-30 km above Chung_li,” Ph.D. (Department of Physies, National Central University, 2002).
    Chen C. L., “The Derivations of the Four-Part Formulae and Its Inference in Spherical Trigonometry,” Maritime Quarterly, Vol. 16 No. 2, June 2007, pp. 67~84 (2007).
    Ciddor P. E., “Refractive index of air: new equations for the visible and infrared,” APPLIED OPTICS, Vol. 35, No. 9 (1996).
    Garfinkel B., “Astronomical Refraction in a Polytropic Atmosphere,” AJ, 72, 235G (1967).
    Gubler J. and Tytler D., “Differential Atmospheric Refraction and Limitations on the Relative Astrometric Accuracy of Large Telescope,” PASP, 110:738-746 (1998).
    Kireev S. V. and Sokolovskiy S. V., “Variations of refraction angles from observations of the Moon from space,” Applied Optics, Vol. 33, No. 36 (1994).
    Mahan A. I., “Astronomical Refraction-Some History and Theories,” Applied Optics, Vol 1, No. 4 (1962).
    Sampson R. D., “Astronomical Refraction And The Equinox Sunrise,” JRASC, 94:26 (2000).
    Sampson R. D., “Astronomical Refraction and the Equinox Sunrise,” RASC, 94:26S (2000).
    Sampson R. D., “Comparison of modelled and observed astronomical refraction,” Ph.D. thesis (Department of Earth and Atmospheric Sciences, University of Alberta, 2001).
    Sampson R. D., “Variability in the Astronomical Refraction of the Rising and the setting sun,” PASP, 115:1256-1261 (2003).
    Sampson R. D., “Comparison of modeled and observed astronomical refraction of the setting Sun,” Applied Optics, Vol. 42, No. 3 (2003).
    Sampson R. D., “Variability of observed low-altitude astronomical refraction (LAAR) from different geographic locations: progress toward a global map of LAAR variability,” Applied Optics, Vol. 44, No. 27 (2005).
    Sampson R. D., “Variability in low altitude astronomical refraction as a function of altitude,” Applied Optics, Vol.47, No.34 (2008).
    Schaefer B. E., “Refraction Near The Horizon,” PASP, 102, 7968 (1990).
    Schiebener P. and Straub J., “Refractive Index of Water and Steam as Function of Wavelength, Temperature and Density,” J. Phys. Chem. Ref. Data, Vol. 19, No. 3 (1990).
    Smith, M. A., “Ptolemy’s Theory of Visual Perception: an English Translation of the Optics,” Transaction of the American Philosophical Society, Vol, 86, Part 2, 300 pp (1996).
    Thomas M. E., “Astronomical Refraction,” Johns Hopkins APL Technical Digest, Volume 17, Number 3 (1996).
    Wei M., Lei Y. and Tie Q. X., “On Astronomical Atmospheric Refraction,” j-chinastron, 2008.10.011 (2008).
    Astronomical Almanac 2010, Central Weather Bureau, Ministry of Transportation and Communications, R.O.C. (2010).
    Astronomical Almanac 2011, Central Weather Bureau, Ministry of Transportation and Communications, R.O.C. (2011).
    Department of Defense World Geodetic System 1984 Its Definition and Relationships with Local Geodetic Systems, NIMA STOCK NO. DMATR83502WGS84, NSN 7643-01-402-0347 (2000).

    下載圖示
    QR CODE