簡易檢索 / 詳目顯示

研究生: 葉相均
Yeh, Hsiang-Chun
論文名稱: 利用理論計算來研究如何合成及修改奈米碳管
The synthesis of modified CNT for catalysis:A VASP study
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 61
中文關鍵詞: 奈米碳管氮原子參雜過渡金屬原子參雜吸附能缺陷形成能空位缺陷stone-wales缺陷
英文關鍵詞: carbon nanotube, nitrogen doped, transition metal doped, adsorption energy, defect formation energy, vacancy defect, stone-wales defect
DOI URL: https://doi.org/10.6345/NTNU202204357
論文種類: 學術論文
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管的應用非常的廣泛,經過各種類型的研究,碳管在催化上能夠有良好的效果,其重點是研究各種缺陷位對於碳管之貢獻,而這裡則鎖定於graphite-like型式的氮參雜缺陷為主體,先比較四個氮的缺陷與三個氮的缺陷位的性質,也考量參雜不一樣的金屬原子,比較其形成能的變化趨勢,在觀察吸附不同小分子的吸附能,發現其3N與4N兩種不同的缺陷,形成完全不同的配位場。
      接著利用包含空位缺陷,stone-wales缺陷,氧氣吸附的吸附位,與含氮之缺陷位,這幾種類型是可能在合成碳管中出現的結構,找出其不同類型的缺陷位所擁有的關聯性,來加以判斷在合成碳管的過程中,其可能的趨勢為何種情況,最後,為了能夠控制出其缺陷位之形狀,而也找出一種能夠修復空位太大之情況。

    There are many applications of carbon nanotube (CNT). In recent researches, CNT has good efficiency to be a catalyst, and we thought it is an important role of different defect sites in CNT. The graphite-like nitrogen doped defect is compared with three and four nitrogen atoms- doped CNT(N-CNT), we also discuss dopants of different transition metals on CNT. Tendency of formation energy and the adsorption of small molecules are studied. It is demonstrated that different ligand field exist in those defect sites.
    Next, we consider vacancy defect site, stone wales defect and oxygen adsorption active site, because those sites may be stable in synthetic procedure of N-CNT. Then, we found they had connection with own defect site to discuss what possible mechanism in synthesis CNT.
    At last, we discussed one possible situation that can repair too bigger vacancy site on CNT.

    圖目錄 III 表目錄 VI 中文摘要 VII Abstract VIII 第一章、緒論 1 1-1 前言 1 1-2 碳管性質 3 1-3 研究目的 5 第二章、計算原理 6 2-1 理論計算化學 6 2-1-1 量子力學 6 2-1-2 密度泛函理論(Density functional theory) 8 2-1-3 Kohn-Sham equation 9 2-1-4 廣義梯度近似法 (Generalized gradient approximation) 11 2-2 計算軟體原理 12 2-2-1 週期性 12 2-2-2 布洛赫理論 (Bloch theorem) 13 2-2-3 虛位勢(Pseudopotential) 15 第三章、實驗結果與討論 17 第一部份:三個氮缺陷與四個氮缺陷位性質比較 17 3-1-1 擁有缺陷位之奈米碳管形成能 17 3-1-2 金屬吸附在缺陷位之吸附能 20 3-1-3 兩種缺陷位之比較 25 第二部分:在碳管中可能出現之缺陷種類 33 3-2-1 stone-wales defect 33 3-2-2 缺陷空位密度 37 3-2-3 氧氣吸附在碳管之情況探討 40 第三部分:如何去製造出目標缺陷形狀 44 3-3-1 形成空位缺陷之討論 44 3-3-2 氮置換碳之情形探討 48 3-3-3 碳回填碳管孔洞機制討論 54 第四章、結論 58 第五章、參考文獻 59

    (1) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277.
    (2) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
    (3) Prinzbach, H.; Weiler, A.; Landenberger, P.; Wahl, F.; Worth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; v. Issendorff, B. Nature 2000, 407, 60.
    (4) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat Mater 2007, 6, 652.
    (5) Dresselhaus, G. D. P. E. M. Academic Press 1996, San Diego (1996).
    (6) Sint, K.; Wang, B.; Král, P. J. Am. Chem. Soc. 2008, 130, 16448.
    (7) Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
    (8) ZhangZhang; ZhangZhang; Liu J. Phys. Chem. B. 2006, 110, 4671.
    (9) N.W.S. Kam, T. C. J., P.A. Wender, H.J. Dai J. Am. Chem. Soc. 2004, 126, 6850.
    (10) Lee, J. M.; Park, J. S.; Lee, S. H.; Kim, H.; Yoo, S.; Kim, S. O. Adv. Mater. 2011, 23, 629.
    (11) Médard, C.; Lefèvre, M.; Dodelet, J. P.; Jaouen, F.; Lindbergh, G. Electrochim. Acta 2006, 51, 3202.
    (12) K. Gong, F. D., Z. Xia, M. Durstock, L. Dai Science 2009, 323, 760.
    (13) Tripkovic, V.; Vanin, M.; Karamad, M.; Björketun, M. E.; Jacobsen, K. W.; Thygesen, K. S.; Rossmeisl, J. J. Phys. Chem. C. 2013, 117, 9187.
    (14) C.P. Ewels, M. G. J. Nanosci. Nanotechnol. 2005, 5, 1345.
    (15) Terrones, M.; Ajayan, P. M.; Banhart, F.; Blase, X.; Carroll, D. L.; Charlier, J. C.; Czerw, R.; Foley, B.; Grobert, N.; Kamalakaran, R.; Kohler-Redlich, P.; Rühle, M.; Seeger, T.; Terrones, H. Applied Physics A 2002, 74, 355.
    (16) Sumpter, B. G.; Meunier, V.; Romo-Herrera, J. M.; Cruz-Silva, E.; Cullen, D. A.; Terrones, H.; Smith, D. J.; Terrones, M. ACS Nano 2007, 1, 369.
    (17) M. Mattesini, S. F. M., J. Etourneau J. Mater. Chem. 2000, 10, 709.
    (18) O.Yu. Podyacheva, A. N. S., A.I. Boronin, L.S. Kibis, S.V. Koscheev, E.Yu. Gerasimov, Z.R. Ismagilov J. Energy Chem. 2013, 22, 270.
    (19) C. Tang, Y. B., D. Golberg, F. Xu Carbon 2004, 42, 2625.
    (20) Liu, L. V.; Tian, W. Q.; Wang, Y. A. J. Phys. Chem. B. 2006, 110, 1999.
    (21) Liu, L. V.; Tian, W. Q.; Wang, Y. A. J. Phys. Chem. B. 2006, 110, 13037.
    (22) Smalley, R. E.; Li, Y.; Moore, V. C.; Price, B. K.; Colorado, R.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. J. Am. Chem. Soc. 2006, 128, 15824.
    (23) Billas, I. M. L.; Massobrio, C.; Boero, M.; Parrinello, M.; Branz, W.; Tast, F.; Malinowski, N.; Heinebrodt, M.; Martin, T. P. Computational Materials Science 2000, 17, 191.
    (24) Tian, W. Q.; Vincent Liu, L.; Alexander Wang, Y. PCCP 2006, 8, 3528.
    (25) Gongli Lu1, a., Kaiming Deng2,b), Haiping Wu2, Jinlong Yang3 and Xin Wang4 J. Chem. Phys. 2006, 124, 054305.
    (26) Yang, C.-K.; Zhao, J.; Lu, J. P. Nano Letters 2004, 4, 561.
    (27) Yildirim, T.; Ciraci, S. Phys. Rev. Lett. 2005, 94, 175501.
    (28) Mabena, L. F.; Sinha Ray, S.; Mhlanga, S. D.; Coville, N. J. Applied Nanoscience 2011, 1, 67.
    (29) Ge. G. Samsonidze, R. S., A. Jorio, M. A. Pimenta, A. G. Souza Filho, A. Grüneis, G. Dresselhaus and M. S. Dresselhaus J. Nanoscience and Nanotechnology 2003, 3, 431.
    (30) Cramer, C. J. Essentials of Computational Chemistry: Theories and Models 2004.
    (31) Levine, I. N. Quantum Chemistry 6Th Ed; Prentice-Hall Of India Pvt. Limited, 2009.
    (32) Lewars, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Springer Netherlands, 2010.
    (33) Parr, R. G. Y., W. Annual Review of Physical Chemistry 1995, 46, 701.
    (34) Hartree, D. R. Mathematical Proceedings of the Cambridge Philosophical Society 1928, 24, 89.
    (35) Hohenberg, P. K., W. Phys. Rev. 1964, 136, B864.
    (36) Ullrich, C. A. K., W. Phys. Rev. Lett. 2001, 87, 093001.
    (37) Sousa, S. F. F., P. A.; Ramos, M. J. J. Phys. Chem. A. 2007, 111, 10439.
    (38) Hellmann, H. J. Chem. Phys. 1935, 3.
    (39) In manuscript
    (40) Tserpes, K. I.; Papanikos, P. Composite Structures 2007, 79, 581.
    (41) Wu, J.; Hagelberg, F.; Dinadayalane, T. C.; Leszczynska, D.; Leszczynski, J. J. Phys. Chem. C. 2011, 115, 22232.
    (42) Luo, G.; Liu, L.; Zhang, J.; Li, G.; Wang, B.; Zhao, J. ACS Appl Mater Interfaces 2013, 5, 11184.
    (43) Özçelik, V. O.; Gurel, H. H.; Ciraci, S. Phys. Rev. B 2013, 88.
    (44) Ohfuchi, M. J. Phys. Chem. C. 2015, 119, 13200.
    (45) Kim, J.; Yamada, Y.; Sato, S. J. Phys. Chem. C. 2014, 118, 7085.
    (46) Yim, W.-L.; Johnson, J. K. J. Phys. Chem. C. 2009, 113, 17636.
    (47) Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Chem. Phys. 2005, 319, 178.

    下載圖示
    QR CODE