研究生: |
許惠慈 HSU, HUI-TZU |
---|---|
論文名稱: |
英語為外語學習的大專生持續從事行動載具輔助語言學習行為意圖之研究:從內在動機、行動控制理論及科技接受模式的觀點 A Study of EFL College Learners’ Behavioral Intention to Continue Engaging in MALL-based Learning: Perspectives from Intrinsic Motivation, Action Control Theory and Technology Acceptance Model |
指導教授: | 林至誠 |
學位類別: |
博士 Doctor |
系所名稱: |
英語學系 Department of English |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 201 |
中文關鍵詞: | 行動控制理論 、內在動機 、科技接受模式 、行動載具輔助語言學習 、行為意圖 |
英文關鍵詞: | Action control theory, Intrinsic motivation, Technology acceptance model, Mobile-assisted language learning, Behavioral intention |
DOI URL: | http://doi.org/10.6345/NTNU202000029 |
論文種類: | 學術論文 |
相關次數: | 點閱:384 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技接受模式已經獲得行動載具輔助語言學習研究的注意。然而,針對行動載具輔助語言學習,延伸性或修正性科技接受模式很少被探討。本研究整合內在動機和行動控制理論於科技接受模式中,來調查對英語為外語學習大專生持續從事行動載具輔助語言學習行為意圖之影響。因此,針對行動載具輔助語言學習,本研究提出一個延伸性整合內在動機和行動控制理論的科技接受模式和十個潛在變數來測試所提的十三個假設。受測對象為557位英語為外語學習台灣大專生,採線上便利抽樣問卷式調查法,並檢測問卷的有效性,確立問卷的題項是否符合本研究假說,後續進行敘述性統計及相關研究分析,最後再以結構方程模式檢驗提出研究模式內所有潛在變數的相關性和解釋力,結構方程模式分析結果統整如下:
(一) 行動導向理論其正向和顯著地影響以英語為外語學習的大專生持續從事行動載具輔助語言學習之行為意圖。
(二) 內在動機其正向和顯著地影響以英語為外語學習的大專生持續從事行動載具輔助語言學習之行為意圖。
(三) 內在動機正向和顯著地影響視為外在動機的認知有用和認知易用。
(四) 行動控制理論和行為意圖持續從事的潛在因素之間以及內在動機和行為意圖持續從事的潛在因素之間,皆具有部分的中介效果。
(五) 整體模組中,行為意圖持續從事(Behavioral Intention to Continue Engaging)的潛在因素被其它九個潛在因素影響,其九個為屬於行動控制理論的非思考固著(Nonpreoccupation)、非猶豫不決(Nonhesitation)和非反覆無常(Nonvolatility)、屬於行動載具輔助語言學習的知覺無所不在價值(Perceived Ubiquity Value) 、任務(Task)和行動自我效能(Mobile Self-efficacy) 、內在動機(Intrinsic Motivation)、屬於科技接受模式的認知易用(Perceived Ease of Use)和認知有用(Perceived Usefulness)。行為意圖持續從事潛在因素的可解釋變異量達80%,因此則指出此模組具有良好的解釋力。
根據量化分析結果,本研究具有理論、教育和研究工具的重要性。首先,研究結果支持用行動控制理論及內在動機來延伸科技接受模式,進而改善學生行為意圖持續從事行動載具輔助語言學習的預測力,其方式是有必要性。第二,關於教育重要性,本研究強調老師和行動載具輔助語言學習軟體開發商應該在他們以行動載具輔助語言學習教學和教材設計時,將這個延伸性整合內在動機和行動控制理論的科技接受模式列入考慮。基於這個延伸性科技接受模式,身為一名老師或一名行動載具輔助語言學習軟體開發商,他應該要首先評估學生是否為行動導向或狀態導向,進而幫助狀態導向的學生移除他們的負面擔憂、啟動他們的行動載具輔助語言學習行動以及持續維持專注,直到其學習活動完成前。此外,老師或軟體開發商可以設計內在驅動和有趣的行動載具輔助語言學習活動;可以進一步增強學生長期持續從事行動載具輔助語言學習的行為意圖。第三,本研究發展一項研究工具可以協助第二語言習得的研究員、老師和軟體開發商更了解學生持續從事行動載具輔助語言學習的行為意圖。
總結,本研究結果呈現,用行動控制理論和內在動機來延伸科技接受模式,其方式是適合用來預測英語為外語學習大專生持續從事行動載具輔助語言學習的行為意圖。針對持續從事行動載具輔助語言學習的行為意圖,未來研究需考慮整合行動控制理論和內在動機於科技接受模式中,目的為了清楚明瞭長期的行動載具輔助語言學習的發展。
The technology acceptance model (TAM) has gained attention in mobile-assisted language learning (MALL) research. However, an extended or modified TAM for MALL is rarely discussed. This study integrated intrinsic motivation (IM) and action control theory (ACT) into a TAM to examine college English as a foreign language (EFL) learners’ behavioral intention to continue engaging in MALL-based learning. Thus, an extended TAM with IM and ACT and 10 latent variables was proposed to test 13 hypotheses in a MALL context. A total of 557 college EFL students from Taiwan participated in this study. An online survey with convenience sampling was adopted to collect data. The effectiveness of the questionnaire was examined to verify whether the items in the questionnaire conformed to hypotheses presented by the study. Descriptive statistics and correlation analyses were subsequently conducted. Finally, structural equation modeling (SEM) was used to examine correlations between latent variables in the proposed research model as well as the explanatory power of the model. The SEM results are as follows:
1. ACT positively and significantly influenced EFL college learners’ behavioral intention to continue engaging in MALL-based learning.
2. IM positively and significantly influenced EFL college learners’ behavioral intention to continue engaging in MALL-based learning.
3. IM positively and significantly affected extrinsic motivations (EM), such as perceived usefulness (PU) and perceived ease of use (PEU).
4. The relationships between ACT and behavioral intention to continue engaging (BICE) and between IM and BICE were partially mediated.
5. BICE was influenced by 9 latent variables: nonpreoccupation, nonhesitation, and nonvolatility of ACT; perceived ubiquity value, task, and mobile self-efficacy of MALL; and IM, PEU, and PU of the TAM. The explained variance (R2) of BICE was 80%; therefore, the model has satisfactory explanatory power.
Based on quantitative analyses, this dissertation has theoretical, pedagogical, and instrumental significance. First, the results indicate the inclusion of ACT and IM in the TAM is necessary to improve the predictive power of the TAM for BICE in MALL-based learning. Second, teachers and MALL software developers should consider the extended TAM with ACT and IM for their teaching and material design. Teachers and MALL software developers should first determine whether learners are action or state oriented and help state-oriented learners resolve their problems, motivate their MALL-based learning action, and remain focused until MALL activities are completed. Moreover, they can design internally driven and engaging MALL activities to strengthen learners’ long-term BICE in MALL-based learning. Third, this study developed an instrument to help second language acquisition researchers, teachers, and software developers understand students’ BICE in MALL-based learning. In conclusion, the extended TAM with ACT and IM may predict EFL college students’ BICE in MALL-based learning. The integration of ACT and IM into the TAM should be considered in future studies on EFL college students’ BICE in MALL-based learning to understand long-term MALL development.
English Part
Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Science, 30(2), 361-391.
Al-Emran, M., Mezhuyev, N., & Kamaludin, A. (2018). Technology acceptance mode in m-learning context: a systematic review. Computers & Education, 125, 389-412.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
Ajzen, I. (1985). From intention to actions: A theory of planned behavior. In J. Kuhl, & J. Beckmann (Eds.), Action control: From cognition to behavior. New York: Springer-Verlag.
Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665-683.
Alderman, M. K. (1999). Motivation for achievement: Possibilities for teaching and learning. Mahwah, NJ: Lawrence Erlbaum Associates.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin,103(3), 411.
Anderson, J. C., & Gerbing, D. W. (1984). The effects of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrikia, 49, 155-173.
Bagozzi, R. P., & Heatherton, T. F. (1994). A general approach to representing multifaceted personality constructs: Application to state self-esteem. Structural Equation Modeling, 1, 35-67.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.
Barrett, P. (2007). "Structural Equation Modelling: Adjudging Model Fit," Personality and Individual Differences, 42(5), 815-24.
Basoglu, E., & Akdemir, O. (2010). A comparison of undergraduate students’ English vocabulary learning: Using mobile phones and flash cards. Turkish Online Journal of Educational Technology, 9(3), 1-7.
Bearden, W. O., Sharma, S., & Teel, J. E. (1982). Sample size effects on chi-square and other statistics used in evaluating causal models. Journal of Marketing Research, 19, 425-430.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606.
Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117.
Bentler, P. M. & Yuan, K.-H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34, 181-197.
Black, A. E., & Deci, E. L. (2000). The effects of instructors’ autonomy support and students’ autonomous motivation on learning organic chemistry: A self-determination theory perspective. Science Education, 84(6), 740-756.
Boekaerts, M. (2002). Motivation to learn. Successful Schooling, 101-120.
Bollen, K. A. (1989a). Structure equations with latent variables. New York: John Wiley.
Bollen, K. A.(1989b). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303-316.
Bratman, M. (1987). Intention, Plans, and Practical Reason. Cambridge, Massachusetts: Harvard University Press.
Breivik, E., & Olsson, U. H. (2001). Adding variables to improve fit: the effect of model size on fit assessment in LISREL. In R. Cudeck, du Toit Stephen, & D. Sörbom (Eds), Structural equation modeling: Present and future. A festschrift in honor of Karl Jöreskog (pp.169-194). IL: SSI.
Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F. J. (2017). Learning with mobile technologies- students’ behavior. Computers in Human Behavior, 72, 612-620.
Brunstein, J. C., & Olbrich, E. (1985). Personal helplessness and actin control: Analysis of achievement-related cognitions, self-assessments, and performance. Journal of Personality and Social Psychology, 48, 1540-1551.
Burston, J. (2014). MALL: the pedagogical challenges. Computer Assisted Language Learning 27(4), 344-357.
Byrne, B.M., (2012). Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming. Routledge, New York.
Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An investigation of mobile learning readiness in higher education based on the theory of planned behavior. Computers & Education, 59, 1054-1064.
Chang, C. K., & Hsu, C. K. (2011). A mobile-assisted synchronously collaborative translation-annotation system for English as a foreign language (EFL) reading comprehension. Computer Assisted Language Learning, 24(2), 155-180.
Chang, C.-C., Liang, C.-Y, Yan, C.-F., & Tseng, J.-S. (2013). The impact of college students’ intrinsic and extrinsic motivation on continuance intention to use English mobile learning systems. The Asia-Pacific Education Researcher, 22(2), 181-192.
Chang, C.-C., Yan, C.-F., & Tseng, J.-S. (2012). Perceived convenience in an extended technology acceptance model: Mobile technology and English learning for college students. Australasian Journal of Educational Technology, 28(5), 809-826.
Chutter, M. Y. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions, Indiana University, USA. Sprouts: Working Papers on Information Systems, 9(37), 1-17.
Chen, K., Chen, J. V., & Yen, D. C. (2011). Dimensions of self-efficacy in the study of smart phone acceptance. Computer Standards & Interfaces, 33(4), 422-431. doi:10.1016/j.csi.2011.01.003
Chen, C. M., & Chung, C. J. (2008). Personalized mobile English vocabulary learning system based on item response theory and learning memory cycle. Computers & Education, 51(2), 624-645.
Chen, C. M., & Hsu, C. K. (2008). Personalized intelligent mobile learning system for supporting effective English learning. Educational Technology & Society, 11(3), 153-180.
Chin, W.W. (1998). The partial least squares approach to structural equation modeling. In Modern Methods for Business Research, Marcoulides, G.A. (ed.). Mahwah, NJ: Lawrence Erlbaum Associates, I295–1336.
Chinnery, G. M. (2006). Emerging Technologies Going to the MALL: Mobile Assisted Language Learning. Language Learning & Technology, 10(1), 9-16.
Coffman, D. L., & MacCallum, R. (2005). Using parcels to convert path analysis models into latent variable models. Multivariate Behavioral Research, 40(2), 235-259.
Chow, M., Herold, D. K., Choo, T.-M, & Chan, K. (2012). Extending the technology acceptance model to explore the intention to use Second Life for enhancing healthcare education. Computers & Education, 59(4), 1136-1144.
Chung, H.-H., Chen, S.-C., & Kuo, M.-H. (2015). A study of EFL college students’ acceptance of mobile learning. Procedia Social and Behavioral Sciences, 176, 333-339.
Chuttur, M. Y. (2009). Overview of the technology acceptance model: origins, developments and future directions. Sprouts: Working Papers on Information Systems, 9 (37), 1-21.
Colpaert, J. (2004). From courseware to coursewear? Computer Assisted Language Learning, 17(3-4), 261-266.
Compeau, D. R. & Higgins, C. A. (1995). Computer self-efficacy: development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. San Francisco: Josey-Bass.
Csikszentmihaly, M. (1991). Literacy and intrinsic motivation. In S.R. Graubard (Ed.), Literacy: An overview by fourteen experts (pp. 115–140). New York: Farrar, Straus, Giroux.
David, O. (2018). Using a tablet computer for EFL positive self-review: increases in Self-Determination Theory-based learning motives. CALICO Journal, 35(2), 182-199.
Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. (Doctoral Dissertation). MIT Sloan School of Management, Cambridge, MA.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of Information technology. MIS Quarterly, 13(3), 319-341.
Davis, F. (1993). User acceptance of computer technology: system characteristics, user perceptions. Int. J. Man-Machine Studies, 38(3), 475-487.
Davis, F. D., Bagozzi, R. P., & Warshw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1004.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22, 1111-1132
Davis, F., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. Int. J. Human-Computer Studies, 45(1), 19-45.
Deci, E. L. (1975). Intrinsic motivation. New York: Plenum Press.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Publishing Co.
Deci, E. L., & Ryan, R. M. (1987). The Support of Autonomy and the Control of Behavior. Journal of Personality and Social Psychology, 53(6), 1024-1037.
Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: human needs and the self-determination of behavior. Journal Psychological Inquiry, 11(4), 227-268.
Deci, E. L., & Ryan, R. M. (2002). Handbook of self-determination research. Rochester, NY: University of Rochester Press.
Deci, E. L., & Ryan, R. M. (2008). Self-determination theory: a macrotheory of human motivation, development, and health. Canadian Psychology, 49(3), 182-185.
Deci, E.L., Vallerand, R.J., Pelletier, L.G., & Ryan, R.M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(3-4), 325-346
Derakhshan, A., & Khodabakhshzadeh, H. (2011). Why CALL not MALL: An in-depth review of text-message vocabulary learning. Theory and Practice in Language Studies, 1(9), 1150-1159.
Dias, J. (2002). CELL phones in the classroom: Boon or bane? C@lling Japan, 10(2).
http://jaltcall.org/cjo/10_1.pdf
Diefendorff, J. M., Hall, R. J., Lord, R. G., Strean, M. L. (2000). Action-state orientation: construct validity of a revised measure and its relationship to work related variables. Journal of Applied Psychology, 85(2), 250-263.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A Confirmatory Factor Analysis of the End-User Computing Satisfaction Instrument. MIS Quarterly, 12(2), 259-274.
Dörnyei, Z. (2001). Teaching and researching motivation. Harlow: Pearson Education.
Dörnyei, Z. (2005). The psychology of the language learner: individual differences in second language acquisition. Mahwah: Lawrence Erlbaum Associates.
Dörnyei, Z. (2009). Individual differences: Interplay of learner characteristics and learning environment. In Language as a Complex Adaptive System, N.C. Ellis and D. Larsen-Freeman (eds.), 237-255. Oxford: Wiley Blackwell.
Dörnyei, Z., & Ryan, S. (2015). The psychology of the language learner revisited. New York, NY: Taylor & Francis.
Efron, B., & Tibshirani, R. (1993). An introduction to the Bootstrap. New York: Chapman & Hall/CRC.
Ellis, R. (2003). Task-based language learning and teaching. Oxford: Oxford University Press.
Ellis, R., & Larsen-Freeman, D. (2006). Language emergence: Implications for applied linguistics-Introduction to the Special Issue. Applied Linguistics, 27, 558-589.
Ellis, R., & Shintani, N. (2014). Exploring language pedagogy through second
language acquisition research. New York: Routledge.
Fagan, M. H., Neill, S., & Wooldridge, B. R. (2008). Exploring the intention to use computers: an empirical investigation of the role of intrinsic motivation, extrinsic motivation, and perceived ease of use. Journal of Computer Information system, 48(3), 31-37.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. Reading, MA: Addison-Wesley.
Flavell, J.H. (1999). ‘Cognitive development: Children’s knowledge about the mind’, in J.T. Spence (ed.), Annual Review of Psychology, 50, 21–45.
Fornell C., & Larcker DF. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing research, 19, 440-452.
Gagné, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331-362.
Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLSGraph: tutorial and annotated example. Communications of the Association for Information Systems, 16, 90-110.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. London: Prentice Hall International.
Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2010). Multivariate Data Analysis. Seventh Edition. Prentice Hall, Upper Saddle River, New Jersey
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-151.
Hau, K. T., & Marsh, H. W. (2004). The Use of Item Parcels in Structural Equation Modeling: Non-Normal Data and Small Sample Sizes. British Journal of Mathematical and Statistical Psychology, 57, 327-351.
Heckhausen, H. (1991). Motivation and action. New York: Springer.
Heckhausen, H., & Kuhl, J. (1985). From wishes to action: The dead ends and short cuts on the long way to action. In M. Frese & J. Sabini (Eds.), Goal-directed behavior: The concept of action in psychology. Hillsdale, NJ: Lawrence Erlbaum.
Hoyle, R. H. (2012). Handbook of Structural Equation Modelling. New York: Guilford.
Hoyle, R. H., & Kenny, D. A. (1999). Sample size, reliability, and tests of statistical mediation. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 195–222). Thousand Oaks: Sage Publications.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
Huang, Y.-M., Huang, Y.-M., Huang, S.-H., Lin, Y.-T. (2012). A ubiquitous English vocabulary learning system: Evidence of active/passive attitudes vs. usefulness/ease-of-use. Computers and Education, 58, 273-282.
Huang, L. L., & Lin, C. C. (2011). EFL learners’ reading on mobile phones. The JALT CALL Journal, 7(1), 61-78.
Huang, Y.-M., Chiu, P.-S, Liu, T,-C., Chen, T.-S. (2011). The design and implementation of meaningful learning-based evaluation method for ubiquitous learning. Computers & Education, 57(4), 2291-2302.
Hull, C. L. (1943). Principles of behavior. New York: Appleton–Century–Crofts.
Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(2), 195-204.
Hsu, C. K. (2015). Learning motivation and adaptive video caption filtering for EFL learners using handheld devices. ReCALL, 27(1), 84-103.
Hsu, C. K., Hwang, G. J., & Chang, C. K. (2013). A personalized recommendation-based mobile learning approach to improving the reading performance of EFL students. Computers & Education, 63, 327-336.
Hsu, C.-L., & Lin, C.-C. (2008). Acceptance of blog usage: the roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
Huang, Y.-M., Chiu, P.-S., Liu. T.-C., & Chen, T.-S. (2011). The design and implementation of a meaningful learning-based evaluation method for ubiquitous learning. Computers & Education, 57(4), 2291-2302.
Hwang, W.-Y., & Chen, H. S. L. (2013). Users’ familiar situational contexts facilitate the practice of EFL in elementary schools with mobile devices. Computer Assisted Language Learning, 26(2), 101-125.
Hwang, W.-Y., Huang, Y.-M., Shadiev, R., Wu, S.-Y., & Chen, S.-L. (2014). Effects of using mobile devices on English listening diversity and speaking for EFL elementary students. Australasian Journal of Education Technology, 30 (5), 503-516.
Hwang, G.-J., Tsai, C.-C., & Yang, S. J. H. (2008). Criteria, Strategies and Research Issues of Context-Aware Ubiquitous Learning. Educational Technology & Society, 11 (2), 81-91.
Ifinedo, P. (2018). Determinants of students’ continuance intention to use blogs to learn: an empirical investigation. Behavior & Information Technology, 37(4), 381-392.
Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N: q hypothesis. Structural Equation Modeling: A Multidisciplinary Journal, 10, 128-141.
Jaramillo, F., Locander, W. B., Spector, P. E., & Harris, E. G. (2007). Getting the job done: the moderating role of initiative on the relationship between intrinsic motivation and adaptive selling. Journal of Personal Selling & Sales Management, 27, 59-74.
Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239-251.
Kaiser, H. F.(1974). An index of factorial simplicity. Psychometrica, 39, 31-36.
Kelley, T. L. (1939). Selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30, 17–24.
Kennedy, C., & Levy, M. (2008). L’italiano al telefonino: Using SMS to support beginners’ language learning. ReCALL, 20(3), 315–350.
Khany, R., & Amiri, M. (2018). Action control, L2 motivational self system, and motivated learning behavior in a foreign language learning context. European Journal Psychology Education, 33, 337-353.
Kim, H.-S. (2011). Effects of SMS Text Messaging on Vocabulary Learning. Multimedia Assisted Language Learning, 14(2), 159-180.
Kim, D., Rueckert, D., Kim, D.-J., & Seo, D. (2013). Students’ perceptions and experiences of mobile learning. Language & Technology, 17(3), 52-73.
King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model, Information and Management, 43(6), 740-755.
Kishton, J. M., & Widaman, K. F. (1994). Unidimensional versus domain representative parceling of questionnaire items: An empirical example. Educational and Psychological Measurement, 54, 757-765.
Kline, R. B. (2011). Principles and practice of structural equation modeling. New York: Guilford Publications, Inc.
Klopfer, E., Squire, K., & Jenkins, H. (2002). Environmental detectives: PDAs as a window into a virtual simulated world. Proceedings of IEEE International Workshop on Wireless and Mobile Technologies in Education, (p. 95-98), Växjö, Sweden, August 2002.
Koryczan, P., Dybczak, L., Malicka, K., Sawicki, A., Atroszko, P. A. (2017). The relationship between action control and general self-efficacy – empirical data. In J. Nyćkowiak & J. Leśny (Eds.), Badania i Rozwój Młodych Naukowców w Polsce – Nauki humanistyczne i społeczne. Część VI (pp. 51– 57). Poznań, Poland: Młodzi Naukowcy.
Krzanowski, W. J., & Marriott, F. H. C. (1995). Multivariate analysis: Classification, covariance structures and repeated measures. London: Arnold
Kuhl, J. (1985). Volitional mediators of cognition-behavior consistency: Self-regulatory processes and action versus state orientation. In J. Kuhl & J. Beckmann (Eds.). Action control: From cognition to behavior (pp. 101-128). Berlin: Springer Verlag.
Kuhl, J. (1987). Action control: The maintenance of motivational states. In F. Halisch & J. Kuhl (Eds.), Motivation, Intention and Volition (pp. 279-291). Berlin: Springer.
Kuhl, J. (1992). “A Theory of Self-Regulation: Action Versus State Orientation, Self Discrimination, and Some Applications,” Applied Psychology: An International Review, 41 (April), 97–129.
Kuhl, J. (1994a).A theory of action and state orientations. In J. Kuhl & J. Beckmann (Eds.), Volition and personality: Action versus state orientation (pp. 9-45). Seattle, WA: Hogrefe & Huber.
Kuhl, J. (1994b). Action vs. state orientation: psychometric properties of the Action Control Scale (ACS-90). In: Kuhl, J., Beckmann, J. (Eds.), Volition and Personality. Hogrefe & Huber Publishers, Gottingen, Germany, pp. 47-59.
Kuhl, J., & Beckmann, J. (1985). Action control from cognition to behavior. Germany: Springer.
Kukulska-Hulme, A. (2006). Mobile language learning now and in the future. In P. Svensson (Ed.), Fran vision till praktik: Sprakutbildning och Informationsteknik (From vision to practice: Language learning and IT) (pp. 295-310). Sweden: Swedish Net University (N atuniversitetet).
Kukulska-Hulme, A. (2009). Will mobile learning change language learning? ReCALL, 21(2), 157-165.
Kukulska-Hulme, A. (2010). Charting unknown territory: models of participation in mobile language learning. International Journal of Mobile Learning and Organization, 4(2), 116-129.
Kukulska-Hulme, A. (2012). Mobile-assisted language learning. In: Chapelle, Carol A. ed. The Encyclopedia of Applied Linguistics. Blackwell Publishing Ltd.
Kukulska-Hulme, A. (2013). Re-skilling language learners for a mobile world. Monterey, CA: The International Research Foundation for English Language Education.
Kukulska-Hulme, A. and Shield, L. (2007). An overview of mobile assisted language learning: Can mobile devices support collaborative practice in speaking and listening? Paper presented at the EUROCALL 2007 Virtual strand.
http://vsportal2007.googlepages.com/=Kukulska_Hulme_and_Shield_2007
Kukulska-Hulme, A., Traxler, J. and Pettit, J. (2007). Designed and User-generated Activity in the Mobile Age. Journal of Learning Design, 2 (1), 52-65.
Kukulska-Hulme, A. and Shield, L. (2008). Overview of Mobile Assisted Language Learning: Can mobile devices support collaborative practice in speaking and listening? ReCALL, 20(3), 271–289.
Lee, M. K.-O., Cheung, C. M.-K., & Chen. Z.-H. (2007). Understanding user acceptance of multimedia messaging services: an empirical study. Journal of the Association for Information Science and Technology, 58(13), 2066-2077.
Lee, D. Y., & Ryu, H. (2013). Learner acceptance of a multimedia-based learning system. International Journal of Human-Computer Interaction, 29(6), 419-437.
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40, 191-204.
Levy, M. (2009). Technologies in use for second language learning. Modern Language Journal, 93(Focus Issue), 769–782.
Li, Z., & Hegelheimer, V. (2013). Mobile-assisted grammar exercises: effects on self-editing in L2 writing. Language Learning & Technology, 17(3), 135-156.
Liaw, S. S. (2008). Investigating students’ perceived satisfaction, behavioral intention, and effectiveness of e-learning: A case study of the Blackboard System, Computers & Education, 51(2), 864-873.
Lin, C. C. (2014). Learning English reading in a mobile-assisted extensive reading program. Computers & Education, 78, 48 –59.
Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: When “good” indicators are bad and “bad” indicators are good. Psychological Methods, 4, 192-211.
Liu, T. Y., & Chun, Y. (2010). Using ubiquitous games in an English listening and speaking course: impact on learning outcomes and motivation. Computers & Education, 55(2), 630-643.
Liu, Y., Li, H., & Carlsson, C. (2010). Factors driving the adopting of m-learning: An empirical study. Computers & Education, 55(3), 1211-1219.
Liu, T.-Y., Tan, T.-H., & Chu, Y.-L. (2007). 2D barcode and augmented reality supported English learning system. In R. Lee, M. Chowdhury, S. Ray & T. Lee (Eds.), Proceedings of the Sixth IEEE International Conference on Computer and Information Science (pp. 5-10). Melbourne, Australia. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE).
Liu, T.-Y., Tan, T.-H., & Chu, Y.-L. (2010). QR code and augmented reality-supported mobile English learning system. In X. Jiang, M-Y. Ma, & C-W. Chen (Eds.), WMMP 2008 (pp. 37-52). (LNCS 5960). Heidelberg: Springer.
Lu, M. (2008). Effectiveness of vocabulary learning via mobile phone. Journal of Computer Assisted Learning, 24(6), 515-525.
Lu, H.-P., and Hsiao, K.-L. (2007). “Understanding Intention to Continuously Share Information on Weblogs.” Internet Research 17 (4): 345–361.
Luzon, M. J., & Gonzalez, M. I. (2006). Using the Internet to promote autonomous learning in ESP. In Arno, E., Soler, A. and Rueda, C. (eds.), Information Technologies in Language for Specific Purposes. Issues and Prospects. New York: Springer, 177-190.
Lys, F. (2013). The development of advanced learner oral proficiency using iPads. Language Learning & Technology, 17(3), 94-116.
Ma, Q. (2017). A multi-case study of university students’ language-learning experience mediated by mobile technologies: A socio-cultural perspective. Computer Assisted Language Learning, 30(3-4), 183-203.
MacCallum, R. C., & Hong, S. (1997). Power analysis in covariance structure modeling using GFI and AGFI. Multivariate Behavioral Research, 32, 193-210.
MacCallum, K., Jeffrey, L., & Kinshuk. (2014). Factors impacting teachers’ adoption of mobile learning. Journal of Information Technology Education: Research, 13, 141-162.
MacIntyre, P. D., & Blackie, R. A. (2012). Action control, motivated strategies, and integrative motivation as predictors of language learning affect and the intention to continue learning French. System, 40, 533-543.
MacIntyre, P. D., & Doucetter, J. (2010). Willingness to communicate and action control. System, 38,161-171.
MacIntyre, P. D., MacMaster, K., & Baker, S. (2001). The convergence of multiple models of motivation for second language learning: Gardner, Pintrich, Kuhl and McCroskey. In Z. Dörnyei & R. Schmidt (Eds.), Motivation and second language acquisition (pp. 461-492). Honolulu, HI: The University of Hawai’i Press.
MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. New York, NY: Lawrence Erlbaum Associates.
Mah, B.Y., & Er, A. N. (2009). Writing web logs in the ESL classroom: a study of student perceptions and technology acceptance model. Asian Journal of University Education, 5(1), 47-70.
Malle, B. F., & Knobe, J. (1997). The folk concept of intentionality. Journal of Experimental Social Psychology, 33(2), 101-121.
Mano, H. (1992). Judgments under distress: Assessing the role of unpleasantness and arousal in judgment formation. Organizational Behavior and Human Decision Processes, 52, 389-4 11.
Marsh, H. W., Hau, K. T., Balla, J. R., & Grayson, D. (1998). Is more ever too much: The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181-220.
Mathieson, K. (1991). Predicting user intention: comparing the TAM with the theory of planned behavior. Information System Research, 2(3), 173-191.
Marangunic, N., & Granic, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society Archive, 14(1), 81-95.
McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation analysis. Psychological methods, 7, 64-82.
Moon, J.-W., & Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web context. Information and Management, 38(4), 217-230.
Mulaik, S. A., James, L. R., Altine, J. V., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430-445.
Nah, K. C., White, P., & Sussex, R. (2008). The potential of using a mobile phone to access the Internet for learning EFL listening skills within a Korean context. ReCALL, 20(3), 331-347.
Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: integrating acceptance and motivational factors into a combined model of self-determination theory and technology acceptance. Computers in Human Behavior, 68, 83-95.
Noels, K. A. (2001). New orientations in language learning motivation: towards a model of intrinsic, extrinsic, and integrative orientations and motivation. Motivation and Second Language Acquisition. University of Hawaii: Second Language Teaching & Curriculum Center.
Noels, K. A. (2009). The internalization of language learning into the self and social identity. In Z. Dornyei & E. Ushioda (Eds.), ¨ Motivation, language identity and the L2 self (pp. 295–313). Bristol, UK: Multilingual Matters.
Noels, K. A., Clément, R., & Pelletier, L. G. (2001). Intrinsic, extrinsic, and integrative orientation of French Canadian learners of English. The Canadian Modern Language Review, 57(3), 424-442.
Noels, K. A., Clément, R., & Pelletier, L. G. (1999). Perceptions of teachers’ communicative style and students’ intrinsic and extrinsic motivation. The Modern Language Journal, 83(1), 23-34.
Noels, K. A., Pelletier, L. G., Clément, R., & Vallerand, R. J. (2003). Why are you learning a second language? Motivational orientations and self-determination theory. Language Learning, 53(1), 33-64.
Noels, K. A., Pelletier, L. G., Clément, R., &Vallerand, R. J. (2000). Why are you learning a second language? Motivational orientations and self-determination theory. Language Learning, 50(1), 57-85.
Noels, K. A., Pelletier, L. G., Vallerand, R. J. (2000). Why are you learning a second language? Motivational orientations and self-determination theory. Language Learning, 50(1), 57-85.
Nunnally, J. C. (1978). Psychometric Theory. New York, NY: McGraw-Hill.
Oksenberg, L., Cannell, C., & Graham, K. (1991). New strategies for pretesting survey questions. Journal of Official Statistics, 7(3), 349-365.
Ong, C.-S., Lai, J.-Y., & Wang, Y.-S. (2004). Factors affecting engineers’ acceptance of asynchronous e-learning systems in high-tech companies. Information & Management, 41, 795-804.
Panichi, L. (2010). Learner motivation and participation in virtual reality. Paper presented at the 14th International CALL Conference, 18–20 August 2010, Antwerp, Belgium.
Park, S. Y. (2009). An analysis of the Technology Acceptance Model in understanding university students’ behavioral intention to use e-learning. Educational Technology & Society, 12(3), 150–162.
Park, S. Y., Nam, M.-W., & Cha, S.-B. (2012). University students’ behavioral intention to use mobile learning: evaluating the technology acceptance model. British Journal of Educational Technology, 43(4), 592-605.
Petersen, S. A., & Markiewicz, J.-K. (2008 March 23–26). PALLAS: Personalised language learning on mobile devices. Proceedings of fifth IEEE international conference on wireless, mobile, and ubiquitous technology in education (WMUTE2008), Beijing, China (pp. 52–59).
Pettit, J., & Kukulska-Hulme, A. (2007). Going with the Grain: Mobile Devices in Practice. Australasian Journal of Educational Technology (AJET), 23 (1): 17-33.
Preedy, V. R., & Watson, R. R. (2009). Handbook of Disease Burdens and Quality of Life Measures. New York: Springer.
Reeve, J. (2006). Thematic issue: autonomy, volitional motivation, and wellness. Motivation and emotion, 30(4), 257-258.
Roca, J. C. M., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24(4), 1585-1604.
Rogers, E. (1962). Diffusion of innovations. New York: Free Press
Roschelle, J. (2003). Keynote paper: Unlocking the learning value of wireless mobile devices. Journal of Computer Assisted Learning, 19, 260-272.
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67.
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development and well-being. American Psychologist, 55(1), 68-78.
Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: basic psychological needs in motivation, development, and wellness. New York: Guilford Publishing.
Ryan, S., & Dörnyei, Z. (2013). The long-term evolution of language motivation and the L2 self. In A. Berndt (Eds.), Fremdsprachen in der perspektive lebenslangen lernens (pp. 89-100). Frankfurt: Peter Lang.
Sánchez, R. A., & Hueros, A. D. (2010). Motivational factors that influence the acceptance of Moodle using TAM. Computers in Human Behavior, 26(6), 1632-1640.
Schwarzer, R. (2014). Self-efficacy: Thought control of action. Taylor & Francis.
Searle, J. R. (1983). Intentionality: An essay in the philosophy of mind. Cambridge, England: Cambridge University Press.
Shang, R.-A, Chen, Y.-C., & Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information and Management, 42(3), 401-413.
Sharp, J. H. (2007). Development, extension, and application: a review of the technology acceptance model. Information Systems Education Journal, 5, 1-11.
Shee, D. Y., & Wang, Y.-S. (2008). Multi-criteria evaluation of the web-based e-learning system: A methodology based on learner satisfaction and its applications. Computer & Education, 50(3), 894-905.
Shin, D.-H. (2007). User acceptance of mobile Internet: Implication for convergence technologies. Interacting with Computers, 19(4), 472-483.
Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.
Simonova, I. (2016). Mobile devices in technical and engineering education with focus on ESP. International Journal of Interactive Mobile Technologies, 10(2), 33-40.
Smeets, E. (2004). Does ICT contribute to powerful learning environments in primary education? Computer & Education, 44, 343-355.
Soleimani, E., Ismail, K., & Mustaffa, R. (2014). The acceptance of mobile assisted language learning (MALL) among post graduate ESL students in UKM. Procedia Social and Behavioral Sciences, 118, 457-462.
Song, Y., & Fox, R. (2008). Use of the PDA for undergraduate students’ incidental vocabulary learning of English. ReCALL, 20(3), 290-314.
Sørebø, Ø., Halvari, H., Gulli, V. F., & Kristiansen, R. (2009). The Role of self-determination theory in explaining teachers’ motivation to continue to use e-learning technology. Computers & Education, 53(4), 1177-1187.
Starbuck, W., & Webster, J. (1991). When is play productive? Accounting, Management and Information Technology, 1, 7 1-90.
Stockwell, G. (2007). Vocabulary on the Move: Investigating an intelligent mobile phone-based vocabulary tutor. Computer Assisted Language Learning, 20(4), 365-383.
Stockwell, G. (2008). Investigating learner preparedness for and usage patterns of mobile learning. ReCALL, 20(3), 253–270.
Stockwell, G. (2010). Using mobile phones for vocabulary activities: Examining the effect of the platform. Language Learning & Technology, 14(2), 95-110.
Stockwell, G. (2013). Technology and motivation in English-language teaching and learning. In E. Ushioda (Ed.), International Perspective on Motivation: Language learning and professional challenges (pp. 156-175). Basingstoke, UK: Palgrave Macmillan.
Stockwell, G., & Hubbard, P. (2013). Some emerging principles for mobile-assisted language learning. Monterey, CA: The International Research Foundation for English Language Education.
Suhr, D. D. (2006). “Exploratory or confirmatory factor analysis?” in Statistics and Data Analysis, 31, 1-17.
Tai, Y. (2012). Contextualizing a MALL: Practice design and evaluation. Educational Technology & Society, 15(2), 220-230.
Tajuddin, N., Mustapha, M., Zaini, A. A., & Aziz, M. N. A. (2012). Investigating students’ acceptance towards blog. Procedia-Social and Behavioral Sciences, 67, 444-453.
Tang, J.-T. E., Tang, T.-I, & Chiang, C.-H. (2012). Blog learning: effects of users’ usefulness and efficiency towards continuance intention. Behavior & Information Technology, 33(1), 36-50.
Terzis, V., & Economides, A. A. (2011). The acceptance and use of computer based assessment. Computers & Education, 56(4), 1032-1044.
Thomas, M. (Ed.). (2009). Handbook of research on Web 2.0 and second language learning. Hershey, PA: IGI Global Reference.
Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC, US: American Psychological Association.
Thornton, P., & Houser, C. (2002). M-learning: Learning in transit. In: Lewis, P. (ed.) The changing face of CALL: A Japanese perspective. The Netherlands: Swets & Zeitlinger, 229-243.
Thornton, P., & Houser, C. (2005). Using mobile phones in English education in Japan. Journal of Computer Assisted Learning, 21(3), 217–228.
Traxler, J. (2007). Defining, discussing and evaluating mobile learning: The moving finger writes and having write. The International Review of Research in Open and Distance Learning, 8(2), 1-12.
Ullman, J. B. (2006). “Structural equation modeling: reviewing the basics and moving forward.” J. Pers. Assess., 87(1), 35–50.
Urbach, N., & Ahlemann, F. (2010). Structural equation modelling in information systems research using partial least squares. Journal of Information Technology Theory and Application, 11(2), 5-40.
Ushioda, E. (2016). Language learning motivation through a small lens: a research agenda. Language Teaching, 49(3), 564-577.
Ushioda, E. (2013). Motivation matters in mobile language learning: a brief commentary. Language, Learning & Technology, 17(3), 1-5.
Ushioda, E. (2011). Language learning motivation, self and identity: Current theoretical perspectives. Computer Assisted Language Learning, 24(3), 199-210.
Ushioda, E. (2013). Motivation matters in mobile language learning: a brief commentary. Language, Learning & Technology, 17(3), 1-5.
Vallerand, R.J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. In M.P. Zanna (Ed.), Advances in experimental social psychology, 29, 271-360. San Diego, CA: Academic Press.
Vallerand, R. J., Blais, M. R., Brière, N. M., & Pelletier, L. G. (1989). Construction et validation de l'échelle de motivation en éducation (EME) [Construction and validation of the Motivation toward Education Scale]. Canadian Journal of Behavioural Science / Revue canadienne des sciences du comportement, 21(3), 323-349.
Vallerand, R. J., Pelletier, L. G., Blais, M. R., Brière, N. M., Senécal, C., & Vallières, E. F. (1992). The Academic Motivation Scale: A measure of intrinsic, extrinsic, and amotivation in education. Educational and Psychological Measurement, 52, 1003-1019.
Vallerand, R. J., Pelletier, L. G., Blais, M. R., Brière, N. M., Senécal, C., & Vallières, E. F. (1993). On the assessment of intrinsic, extrinsic, and amotivation in education: Evidence on the concurrent and construct validity of the Academic Motivation Scale. Educational and Psychological Measurement, 53, 159-172.
Vandergrift, L. (2005). Relationships among motivation orientations, metacognitive awareness and proficiency in L2 listening. Applied Linguistics, 26(1), 70-89.
Venkatesh, V. (1999). Creation of favorable user perceptions: exploring the role of intrinsic motivation, MIS Quarterly, 23(2), 239-260.
Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365.
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: development and test. Decision Sciences, 27(3), 451-481.
Venkatesh, V., & Davis, F. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., & Morris, M. G. (2000). Why don’t mean every stop to ask for directions? Gender, social influences, and their role in technology acceptance and usage behavior, MIS Quarterly, 24(1), 115-139.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Speier, C., & Morris, M. G. (2002). User acceptance enablers in individual decision making about technology: toward an integrated model. Decision Sciences, 33(2), 297-316.
Viberg, O., & Gronlund, A. (2012). Mobile assisted language learning: a literature review. mLearn 2012. 11th World Conference on Mobile and Contextual Learning, Helsinki, Finland.
Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminating validity testing in marketing: an analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44(1), 119-134.
Walqui, A. (2000). Contextual factors in second language acquisition. ERIC Digest. ERIC Clearinghouseon Languages and Linguistics, Document ED444381, Washington, DC.
Wang, S., & Higgins, M. (2006). Limitations of mobile phone learning. The JALT CALL Journal, 2(1): 3-14.
Wang, S., & Smith, S. (2013). Reading and grammar learning through mobile phones. Language Learning & Technology, 17(3), 117-134.
Wang, Y.-S., Wu, M.-C., & Wang, H-Y. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British Journal of Educational Technology, 40(1), 92-118.
West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation modeling with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, issues, and applications, 56-75.
Weston, R. & Gore, P. A. (2006). A brief guide to structural equation modeling. The Counseling Psychologist. 34 (5), 719 – 751.
Ya, F. Y., Ching, J. C., & Chih, K. C. (2013). Mobile assisted language learning: Overview of literature from 2008 to 2012. The 21st International Conference on Computers in Education (ICCE 2013), Denpasar Bali, Indonesia. Google Scholar
Yoo, S. J., Han, S. H., & Huang, W. (2012). The roles of intrinsic motivators and extrinsic motivators in promoting e-learning in the workplace: A case from South Korea. Computers in Human Behavior, 28, 942-950.
Yoon, C., & Kim, S. (2007). Convenience and TAM in a ubiquitous computing environment: The case of wireless LAN. Electronic Commerce Research and Applications, 6(1), 102-112.
Zhang, S., Zhao, J., & Tan, W. (2008). Extending TAM for online learning systems: An intrinsic motivation perspective. Tsinghua Science and Technology, 13(3), 312-317.
Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). Self-motivation for Academic Attainment: The role of self-efficacy beliefs and personal goal setting. American Educational Research Journal, 29 (3), 663-676.
Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25 (1), 82-91
Chinese Part
邱皓政(2011)。結構方程模式:LISREL的理論、技術與應用(二版)。臺北市:雙葉書廊。
Chiou, Haw-Jeng. (2011). Structural Equation Modeling: Theory, Technique, and Application of LISREL. 2ed. Taipei City: Yeh Yeh Book Gallery.
黃芳銘(2007)。結構方程模式理論與應用(五版)。台北:五南。
Hwang, Fang-Ming. (2007). Theory and Application of Structural Equation Modeling. 5ed. Taipei City: Wunan Book Inc.
張偉豪(2011)。論文寫作-SEM不求人。台北:鼎茂。
Chang, Wei-Hao. (2011). Thesis Writing—Understanding SEM. Taipei City: Ting Mao.
張偉豪、鄭時宜(2012)。與結構方程模型共舞:曙光初現。新北市:前程文化。
Chang, Wei-Hao and Shih-Yi Cheng. (2012). Dancing with Structural Equation Modeling: Dawn. New Taipei City: Future Career Publishing Corporation.
李茂能(2006)。結構方程模式軟體AMOS之簡介及其在測驗編製上之應用。台北:心理。
Li, Mao-Neng. (2006). Introduction to AMOS Structural Equation Modeling Software and Its Application in Compiling Tests. Taipei City: Hsin-Li Publishing.
陳正昌、程炳林、陳新豐、劉子鍵(2003)。多變量分析方法:統計軟體應用(三版)。台北:五南。
Chen, Cheng-Chang, Ping-Lin Cheng, Hsin-Feng Chen, and Tzu-Chien Liu. (2003). Multivariate Analysis Method: Statistical Software Application. 3ed. Taipei City: Wunan Book Inc.