研究生: |
梁中昊 Chung-hao Liang |
---|---|
論文名稱: |
以鎳金屬催化帶官能基1,3-環己二烯分子內環化反應之研究 Nickel-Mediated Intramolecular Cyclization of 1,3-Dienes Containing Various Functional Groups |
指導教授: |
葉名倉
Yeh, Ming-Chang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 209 |
中文關鍵詞: | 鎳 、分子內環化反應 、1,3-環己二烯 、連結雙環化合物 |
英文關鍵詞: | nickel, intramolecular cyclization, 1,3-cyclohexadiene, fused bicyclic compound |
論文種類: | 學術論文 |
相關次數: | 點閱:199 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用(η5-1,3-環己雙烯)三羰鐵錯鹽與帶官能基鋅銅試劑反應,合成一系列C-5位置上帶官能基1,3-環己雙烯三羰鐵衍生物。經過Ce(IV)氧化去錯合後,可得到帶官能基共軛環己雙烯衍生物。
當C-5碳鏈長度為一,醛為官能基時,可得到橋頭雙環[3.2.1]化合物;當碳鏈長度為二,三時,可順利形成聯結雙環化合物。當碳鏈長度為四時,則會形成螺旋雙環化合物,若碳鏈長度為五時,則因為位置太遠,無法形成好的過渡狀態,因此無法進行合環反應。以酮基為官能基時,由於酮基本身活性較小,立障較大,所以產率均不佳,且環化產物無規則性。
以芳香醛為官能基時,只有在鄰位(ortho)取代會發生環化反應,反應溫度的高低可控制產物的比例:當反應溫度較低(35℃)時,偏向金屬與不飽和鍵之加成反應;當溫度較高時(55℃),以H-Ni-SiEt3加成至雙烯反應機構進行者增加,但是仍以金屬與不飽和鍵之加成反應為主。
將側鏈放置雜原子,形成帶有雜原子雙烯化合物時,由於無法成功進行去錯合反應,因此無法將我們研究範圍擴大。
本論文將探討以帶官能基1,3-環己雙烯衍生物利用鎳金屬催化分子內環化反應的限制及應用,並對未來發展做一展望。
Ni(cod)2 is a powerful catalyst for intramolecular cyclization of 1,3-cyclohexadienes bearing a tethered aldehyde. The starting diene-aldehyde compounds are easily available using our own developed methods.
Treatment of the catalytic amount of Ni(cod)2, PPh3, and HSiEt3 (5 molar equiv) with cyclohexad-1,3-dienes containing a tethered aldehyde produced fused-, spiro- or bridged-bicyclic skeleton depending on the length of the side-chain( -(CH2)nCHO). With one carbon (n= 1), bridged-bicyclic compounds were isolated; with two or three carbons (n= 2 or 3), fused-bicyclic skleton were the major cyclized products, with four carbons (n= 4), spiro-bicyclic compounds were generated, with five carbons on the side-chain (n= 5), the intramolecular cyclization failed, the reduction of the aldehyde occurred to give dienol derivatives.
Cyclohexa-1,3-dienes containing an ortho aromatic aldehyde also underwent intramolecular cyclization under the similar reaction conditions. Tricyclic skeletons were isolated in good yields.
The scope and limitations of the nickel-mediated intramolecular cyclization of 1, 3-cyclohexadienes containing various functional groups will also be discussed.
1. (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley-Interscience, New York, 1994.
(b) Trost, B. M.; Vranken, D. L. V. Chem. Rev. 1996, 96, 395-422.
(c) Ojima, I. Catalytic Asymmetric Synthesis, 2nd ed., Wiley-VCH, New York, 2000.
(d) Tsuji, J. Transition Metal Reagents and Catalysts; John Wiley & Sons, Ltd.: London, England, 2000.
2. Grée, R.; Gigou, A. Tetrahedron Lett. 1991, 32, 635.
3. Yeh M. C. P.; Hwu, C. C. J. Organomet. Chem. 1991, 419, 314.
4. Pearson, A. J.; Chang, K. J. Chem. Soc., Chem. Commun. 1991, 394; see also J. Org. Chem. 1993, 58, 1228 for more recent examples.
5. Grée, R.; Pinsard, P. Tetrahedron Lett. 1990, 31, 1141.
6. Yeh, M. C. P.; Tsai, M. S.; Rao, U. N.; Hsueh, P.-Y. Organometallics 2001, 20, 289.
7. Knölker, H. J. Synlett, 1996, 11.
8. (a) Yeh, M. C. P.; Sheu, B. A.; Fu, H. W.; Tau, S. I.; Chuang, L. W. J. Am. Chem. Soc. 1993, 115, 5941.
(b) Yeh, M. C. P.; Chuang, C. N. J. Chem. Soc., Chem. Commun. 1994, 703.
(c) Yeh, M. C. P.; Tsou, C. -J.; Chuang, C. N. J. Chem. Soc., Chem. Commun. 1992, 890.
9. Knochel, P.; Yeh, M. C. P.; Berk, S. C. J. Org. Chem. 1988, 53, 2390.
10. Knochel, P.; Singer, R. D.; Chem. Rev. 1993, 93, 2117 and reference cited therein.
11. Yeh, M. C. P.; Chuang, L. W.; Hwu. C. -C.; Sheu, J. M.; Row, L. C. Organometallics, 1995, 14, 3396.
12. Yeh, M. C. P.; Rao, U. Narasimha J. Chin. Chem. Soc. 2000, 47, 283.
13. Yeh, M. C. P.; Chuang, L. W.; Tsai, M. S. Chem. Commun., 1999, 805.
14. Yeh, M. C. P.; Chuang, L.-W.; Chang, S.-C.; Lai, M.-L.; Chou, C.-C. Organometallics 1997, 16, 4435-
15. Yeh, M. C. P; Wang, F. C.; Tu, J. J.; Chang, S. J.; Chou, C. C.; Liao, J. W. Organometallics 1998, 17, 5656.
16. (a) Pearson, A. J.; Dorange, I. B. J. Org. Chem. 2001, 66, 3140.
(b) Pearson, A. J.; Alimardanov, A. J. Org. Chem. 1998, 63, 6610.
(c) Pearson, A. J., Alimardanov, A. Organometallics 1998, 17, 3739.
17. Okauchi, T.; Teshima, T.; Hayashi, K.; Suetsugu, N.;Minami, T. J. Am. Chem. Soc. 2001, 123, 12117.
18. Periasamy, M.; Rameshkumar, C.; Mukkanti, M. J. Organomet. Chem. 2002, 649, 209.
19. Nicolaou, K. C.; Sugita, K.; Baran, P. S.; Zhong Y.-L. J. Am. Chem. Soc. 2002, 124, 2223.
20. (a) Wender, P. A.; Smith, T. E. Tetrahedron, 1998, 54, 1255.
(b) Wender, P. A.; Smith, T. E. J. Org. Chem. 1996, 61, 824.
(c) Bednarski, M. D.; Lyssikatos, J. P. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 2, p 661.
21. (a) Mori, M.; Sato, Y. J. Am. Chem. Soc. 2000, 122, 1624.
(b) Bäckvall, J. E.; Nyström, J. E. J. Am. Chem. Soc. 1985, 107, 3676.
(c) Bäckvall, J. E.; Vågberg, J. O. J. Org. Chem. 1987, 52, 5430.
(d) Bäckvall, J. E.; Andersson, P. G. Tetrahedron Lett. 1995, 36, 5397.
(e) Bäckvall, J. E. ; Andersson, P. G. J. Am. Chem. Soc. 1992, 114, 6374.
22. (a) Pauson, P. L.; Khand, I. U. J. Chem. Soc., Perkin Trans. 1 1973, 977.
(b) Jameson, T. F.; Shambayati, S.; Crowe, W. E.; Schreiber, S. L. J. Am. Chem. Soc. 1997, 119, 4353.
23. Jeong, N.; Sung, B. K. J. Am. Chem. Soc. 2000, 122, 6771.
24. Son, S. U.; Yoon, Y. A.; Choi, D. S.; Park, J. K.; Kim, B. M.; Chung, Y. K.; Org. Lett. 2001, 3, 1065.
25. (a) Grubbs, R. H.; Trnka, T. M. Acc. Chem. Res. 2001, 34, 18.
(b) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4412.
26. Grubbs, R. H.; Louie, J.; Bielawski, C. W. J. Am. Chem. Soc. 2001, 123, 11312.
27. (a) McMurry, J. E. Chem. Rev. 1989, 89, 1513.
(b) Fürstner, A.; Bogdanovic, B. Angew. Chem., Int. Ed.Engl. 1996, 35, 2442.
28. (a) Nicolaou, K. C.; Yang, Z.; Liu, J. J. Nature 1994, 367, 630.
(b) Nicolaou, K. C.; Guy, R. K. Angew. Chem. Int. Ed. 1995, 34, 2079.
29. (a) Swindell, C. S.; Fan, W. J. Org. Chem. 1996, 61, 1109.
(b) Dauben, W. G.; Farkas, I.; Bridon, D. P.; Chuang, C.-P.; Henegar, K. E. J. Am. Chem. Soc. 1991, 113, 5883.
30. (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34.
(b) Trost, B.M.; Krische, M. J. Synlett 1998, 1.
31. Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1991, 113, 701. For full paper see :J. Am. Chem. Soc. 1994, 116, 4255, 4268.
32. (a) Heck, R. F.; Dieck, H. A. J. Am. Chem. Soc. 1974, 96, 1133.
(b) de Meijere, A.; Meyer, F. E. Angew. Chem. Int. Ed.Engl. 1994, 33, 2379.
33. Negishi, E.; Zhang, Y. J. Am. Chem. Soc. 1989, 111, 3454.
34. (a) Bäckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1990, 112, 3683.
(b) Bäckvall, J. E. Pure and Appl. Chem. 1992, 64, 429.
35. Bäckvall, J. E. Pure and Appl. Chem. 1996, 68, 535.
36. (a) Cheng, C. H.; Huang, D.-J.; Rayabarapu, D. K. Chem. Eur. J. 2000, 6, 3706.
(b) Cheng, C. H.; Huang, D.-J.; Sambaiah, T. New J. Chem. 1998, 22, 1147.
(c) Cheng, C. H.; Rayabarapu, D. K.; Sambaiah, T. Angew. Chem. Int. Ed. Engl. 2001, 40, 1286.
37. Cheng, C. H.; Rayabarapu, D. K. J. Am. Chem. Soc., 2002, 124, asap.
38. Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am. Chem. Soc. 1997, 119, 4911.
39. Montgomery, J.; Lozanov, M. J. Am. Chem. Soc. 2002, 124, asap.
40. Hartwig, J. F.; Pawlas, J.; Nakao, Y. J. Am. Chem. Soc. 2002, 124, 3669.
41. (a) Wender, P. A.; Ihle, M. C. J. Am. Chem. Soc. 1988, 110, 5904.
(b) Wender, P. A.; Nuss, J. M. J. Org. Chem. 1997, 42, 4908.
42. (a) Mori, M.; Takimoto, M. J. Am. Chem. Soc. 2001, 123, 2895.
(b) Mori, M.; Takimoto, M. Org. Lett. 2001, 3, 3345.
43. Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259.
44. (a) Mori, M.; Sato, Y.; Saito, N. J. Am. Chem. Soc. 2000, 122, 2371.
(b) Mori, M.; Sato, Y.; Saito, N. Tetrahedron 1998, 54, 1153.
45. (a) Tarmura, Y.; Shibata, K. Org. Lett. 2001, 3, 2181.
(b) Tarmura, Y. J. Organomet. Chem. 1999, 576, 215.
(c) Tarmura, Y.; Kimura, M. Tetrahedron Lett. 2000, 41, 6789.
46. (a) Ito, M.; Wada, A. J. Org. Chem. 2000, 65, 2348.(CuCl2/EtOH method)
(b) Pearson, A. J.; Ham Tetrahedron Lett. 1980, 21, 4637. (Me3NO method)
(c) Iwata, C.; Takemoto, Y. Tetrahedron Lett. 1994, 35, 8821.(CAN method)
(d) Frank-Neumann, M.; Sedrati, M. Angew. Chem. Int. Ed. Engl. 1986, 25, 1131.(H2O2 / NaOH method)
47. (a) Mori, M.; Sato, Y.; Takimoto, M. Tetrahedron Lett. 1998, 39, 4543.
(b) Mori, M.; Sato, Y.; Sawaki, R. Organometallics 2001, 20, 5510.
48. Knochel, P.; Jeong, N.; Yeh, M. C. P. Berk, S. C. Organometallics 1990, 9, 3053.
49. (a) Chatani, N.; Hanafusa, T. J. Org. Chem. 1988, 53, 3539.
(b) Suginome, M.; Ito, Y.; Kinugasa, H. Tetrahedron Lett. 1994, 35, 8635.
(c) Chatani, N.; Hanafusa, T Tetrahedron Lett. 1986, 27, 4197.
48. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 48, 4163.
49. Grubbs, R. H.; Rosen, R. H.; Timmers, F. J. Organometallics 1996, 15, 1518.
50. Knochel, P.; Yeh, M. C. P.; Jeong, N.; Berk, S. C. Organometallics, 1990, 9, 3053.
51. (a) Krantz, A.; Laureni, J. J. Am. Chem. Soc. 1981, 103, 486.
(b) Booker, B. C.; Bruice, T. C. J. Am. Chem. Soc. 1991, 113, 4208.
52. (a) Dormond, A.; Elbouadili, A.; Moise, C. J. Org. Chem. 1989, 54, 3747.
(b) Posner, G. H.; Shapiro, T. A. Bioorg. Med. Chem. 2000, 8, 1361.
53. Diiron nonacarbinyl (32g) was prepared by photolyzing iron pentacarbonyl (66g) in acetic acid (42mL) and benzene (150mL). King, R. B. In Organometallics Synthesis; Vol. 1; Academic Press: New York, 1965, P. 93.