簡易檢索 / 詳目顯示

研究生: 潘霈榕
Pei-Jung Pan
論文名稱: 融入概念改變策略之視覺化學習系統對二極體迷思概念學習之影響
The Effect of Visualized Learning System with Conceptual Change Strategy on Correcting Misconception in Diode Circuit Learning
指導教授: 張國恩
Chang, Kuo-En
宋曜廷
Sung, Yao-Ting
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 105
中文關鍵詞: 迷思概念視覺化教學概念改變策略二極體
論文種類: 學術論文
相關次數: 點閱:213下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在探討融入POE策略之視覺化教學是否能提升學生在二極體迷思概念的學習成效。因此,建立一融入POE策略之視覺化概念學習系統(Visualized Conceptual Learning System with Predict-Observe-Explain Tasks, POE-VCLS),此系統可診斷學習者在二極體單元所擁有的迷思概念,接著藉由融入POE策略之視覺化教學來提昇二極體單元的學習成效,並且增進學生對於電子學課程的學習興趣。本實驗對象為台北市某大學工業科技教育學系兩個班級的大二學生,以學生前測成績來配對,隨機分派到實驗組與控制組。實驗組以融入POE策略之視覺化教學進行迷思概念學習;控制組以一般網頁教學進行迷思概念學習。另外並於後測之後施予問卷調查以了解融入POE策略之視覺化教學對學生在二極體迷思概念學習態度的影響。
    研究結果發現融入POE策略之視覺化教學對學生在二極體迷思概念的學習成效上顯著優於一般網頁教學,透過系統紀錄學生的學習狀況分析,顯示「融入POE策略之視覺化概念教學」對學習者在二極體迷思概念的學習成效與閱讀時間有顯著正相關,但在一般網頁教學卻無顯著相關。此外,經由問卷調查分析結果,學習者對於運用「融入POE策略之視覺化概念學習系統」學習二極體迷思概念,皆持有正面肯定的態度。

    The purpose of this study is to optimize the effect of correcting misconception in diode circuit learning by applying Visualized Conceptual Learning System with Predict-Observe-Explain Tasks (POE-VCLS). Therefore, it can diagnose the misconceptions of learners in diode circuit by POE-VCLS. Following learners can be more interested in learning electronics due to Visualized Teaching with Predict-Observe-Explain Tasks. The subjects of this research were undergraduates in department of industrial technology education. The subjects were randomly assigned to experimental group and control group by subjects’ pretest grades. Experimental group used Visualized Teaching with Predict-Observe-Explain Tasks to learn misconception but at same time control group used conventional web teaching to learn misconception. Finally the experimental group would be quizzed by questionnaire after post-test, due to understanding the effect of learning misconception attitude through Visualized Teaching with Predict-Observe-Explain Tasks.
    The experimental results showed that the Visualized Teaching with Predict-Observe-Explain Tasks had better than conventional web teaching in learning misconception. Afterwards POE-VCLS would record different conditions of learners. Then the experimental results showed that experimental group notablely had positive correlation between the effect of learning misconception and reading time, but control group did not. Besides, the results of questionnaire showed that learners had positive attitude to use POE-VCLS to correct misconception in diode circuit learning.

    摘 要 i 附表目錄 vi 附圖目錄 vii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 6 第二章 文獻探討 7 第一節 迷思概念與其診斷方式 7 第二節 概念改變理論與策略 12 第三節 視覺化教學 18 第三章 系統設計理念、架構與功能 22 第一節 設計理念與原則 22 第二節 系統架構 24 第三節 教學內容 25 第四節 系統功能 27 第四章 研究方法 43 第一節 實驗對象 43 第二節 實驗設計 44 第三節 實驗工具 46 第四節 實驗程序 48 第五章 結果與討論 49 第一節 二極體迷思概念學習成效分析 49 第二節 二極體迷思概念矯正結果分析 53 第三節 學習歷程分析 57 第四節 學生態度問卷 60 第五節 討論 65 第六章 結論與建議 68 第一節 結論 68 第二節 建議 69 文獻參考 71 附錄一:半開放式二階層診斷測驗卷 76 附錄二:二極體二階診斷測驗卷(前後測) 86 附錄三:「POE-VCLS系統」之學生態度問卷(實驗組) 104

    一、中文部分
    王盈琪、王美芬 (2006)。利用POE教學模式探討國小三年級學童光迷思概念及其概念改變之成效。中華民國第二十二屆科學教育學術研討會,國立台灣師範大學。

    李婉芬、林志明和唐文華 (2007)。以3D 電腦動畫模擬輔助國小學童磁場概念之學習。物理教育學刊,8(1),17-32。

    李賢哲、樊琳、張蘭友 (2005)。國小學童「電池」概念之診斷—以兩段式選擇題為例。科學教育學刊,13(3), 263-288。

    邱美子 (2001)。國中電化學電腦動畫輔助教學之學習成效研究。國立台灣師範大學化學研究所碩士論文,未出版,台北市。

    邱美虹 (2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。

    林嘉琦、黃台珠(2005)。應用POE教學策略探討學習「溶解」單元概念改變之研究。中華民國第二十一屆科學教育學術研討會,國立彰化師範大學。

    林麗娟 (1996)。多媒體電腦圖像設計與視覺記憶的關係。教學科技與媒體,28,3-12。

    莊雅茹 (1996)。 CAL 軟體動畫界面設計。教學科技與媒體,28,13-18。
    莊雅茹 (1996)。 CAL軟體電腦動畫應用與學習成效分析。視聽教育雙月刊,38(2), 9-16。

    張添洲(2000)。教材教法-發展與革新。台北:五南。

    陳美紀、梁季萍 (2005)。商職學生長期債券投資成本迷思概念診斷工具發展之研究。教育科學期刊,5(1),15-39。

    陳啟明、陳瓊森 (1992)。發展紙筆測驗以探究高一學生對直流電路的迷思概念。科學教育,3,21-72。

    蔡怡玉(民 94)。電腦輔助教學對國小閱讀理解困難學生教學成效之研究。國立台南大學特殊教育研究所碩士論文,未出版,台南市。

    蔡嘉興、陳彥鳴 (2007)。從後現代科學世界觀探討學生的概念改變機制:以電流概念為例。教育部95年度中小學科學教育專案年度結案報告,未出版。

    謝哲仁 (2002)。動態電腦幾何教學建構之設計實例與理論探析。國立嘉義大學數學教育研究所:革新國民中小學數學教育議題。高雄:復文,225-244。

    謝進生(民85)。電腦動畫在科技教育中的應用研究。中學工藝教育,29(7),26-31。

    顧大維、陳琬如 (2007)。對應教學策略之圖像呈現原則於概念型知識內容之研究。教學科技與媒體,82,68-82。

    二、英文部分
    Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183-198.

    Alessi, S. M. & Trollip, S. R. (2001). Multimedia for learning:Methods and Development. Needham Heights, MA: Allyn & Bacon.

    Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293-307.

    Chang, H. P., Chen, J. Y., Guo, C. J., Chen, C. C., Chang, C. Y., & Lin, S. H. et al. (2007). Investigating Primary and Secondary Students’Learning of Physics Concepts in Taiwan. International Journal of Science Education, 29(4), 465-482.

    Colaso, V., Kamal, A., Saraiya, P., North, C., McCrickard, S., & Shaffer, C. (2002). Learning and retention in data structures: A comparison of visualization, text, and combined methods. Paper presented at the Proceedings of ED-MEDIA 2002 World Conference on Educational Multimedia/Hypermedia and educational Telecommunications.

    De Jong, T. & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(22), P179-201.

    Griffard, P. B. & Wandersee, J. H. (2001). The two-tier instrument on photosynthesis: what does it diagnose? International Journal of Science Education, 23(10), 1039-1052.

    Gunstone, R.F. & Champagne, A. B. (1990). Promoting conceptual change in the laboratory. In E. Hegarty-Hazel (Ed,). The Student Laboratory and the Science Curriculum. London: Routledge.

    Oakley, B. (1992). Implementation of interactive tutorials for an introductory circuit analysis course, retrieved May 15, 2008 from the World Wide Web: http://www.ewh.ieee.org/soc/es/Aug1996/002/cd/tutorial.htm.

    Sanger, M. J., Brecheisen, D. M., & Hynek, B. M. (2001). Can computer animations affect college biology students’ conceptions about diffusion & osmosis? The American Biology Teacher, 63, 104-109.

    Sanger, M. J. & Greenbowe, T. J. (1997). Common Student Misconceptions in Electrochemistry: Galvanic, Electrolytic, and Concentration Cells. Journal of Research in Science Teaching, 34(4), 377-398.

    Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10, 159-169.

    Treagust, D. F. & Chandrasegaran, A. L. (2007). The Taiwan National Science Concept Learning Study in an International Perspective. International Journal of Science Education, 29(4), 391-403.
    Tsai, C. C. & Chou, C. (2002). Diagnosing students’ alternative conceptions in science. Journal of Computer Assisted Learning, 18, 157-165.

    Ronen, M. & Eliahu, M. (2000). Simulation --- a bridge between theory and reality: the case of electric circuits. Journal of Computer Assisted Learning, 16, 14-26.

    White, R., & Gunstone, R. F. (1992). Prediction–observation -explanation. In White,R., & Gunstone, R., Probing understanding, 44-64.London: The Falmer Press.

    Williamson, V. M. & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry. Journal of Research in Science Teaching, 32(5), 521-534.

    QR CODE