簡易檢索 / 詳目顯示

研究生: 蔡威至
論文名稱: 以文件組成結構進行投影片比對之研究
Using Document Structure in Matching of Projected Slides
指導教授: 李忠謀
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 53
中文關鍵詞: 影像比對文件分析文件結構特徵
英文關鍵詞: image matching, document analysis, structural-based
論文種類: 學術論文
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一影像比對的方法,可用於影像畫面與原始文件的比對。在不需要建立原始文件的背景下,擷取出文件的文字及圖片區域,建立結構描述後進行比對,使原始文件不需受限於相同背景。比對方法分為四個階段:(1)擷取影像文件內容 (2)進行文件分析,擷取影像文件的文字及圖片區域 (3)分別影像文件的文字及圖片區域建立結構描述 (4)以結構描述進行比對,計算影像文件與任一原始文件之結構描述的可信度值,以可信度值最高的原始文件作為比對結果。
    本研究利用 51組、共1153張投影片,每組投影片皆有一段對應的影片,比對的進行是由影片中擷取出影片畫面,利用所提出的比對演算法,找出與影片畫面對應的原始文件,實驗結果可達到 97%的正確率,能夠克服拍攝品質不良及投影片內容組成複雜的問題。

    This thesis proposes an image matching algorithm for matching up video document images against original documents. Our approach extracts the text and picture regions from the document, then build structure description to match up the original document without reconstructing the background. This makes original documents be manufactured with different background. The algorithm consists of four steps. First, the document content is segmented from the video and calibrated to the video frame size. We named the document content video document. Second, the video document is processed by document analysis, then the text and picture regions are extracted. Third, the text and picture region are used to build structure description
    individually. Finally, we calculate the confident value between the video document and each original document, and take the one which have the highest confident value to be
    the matching result.
    Experiments were conducted using fifty-one sets of slides and video files, and the number of all slides is 1153. We use the proposed algorithm to match up the video
    frame against the corresponding slide. The experimental results attain 97.4% precision rate in total slides. This shows the algorithm can be applied to the low quality video
    and slides with composite contents.

    目錄 第一章 緒論.............. 1 1.1研究動機 ............... 1 1.2研究目的 ............... 2 1.3 研究範圍與限制 ........ 3 1.4 論文架構 ............. 4 第二章 文獻探討.......... 5 2.1名詞釋義 ............... 6 2.2影像比對相關技術 ........ 8 2.3 系統流程 ............. 11 第三章 結構描述的建立及比對 ... 13 3.1建立文字區域結構描述 .... 13 3.2建立圖片區域結構描述 .... 15 3.3以結構描述進行文件比對 .. 17 3.3.1計算文字區域結構描述的相似度 ... 18 3.3.2計算圖片區域結構描述的相似度 ... 19 3.3.3可信度值 ............. 19 第四章 影像文件內容擷取及分析 ... 21 4.1影像文件內容擷取及分析之流程 ... 21 4.2影像文件內容擷取 ........ 22 4.2.1投影片區域偵測 ........ 23 4.2.2校正影像文件 .......... 25 4.3影像文件分析 ............ 26 4.3.1文字區域擷取 .......... 27 4.3.2圖片區域擷取 .......... 28 4.4結論 ................... 29 第五章 實驗結果及說明..... 31 5.1 實驗資料來源 .......... 31 5.2 實驗 ................. 32 5.2.1不同比對方式之比對正確率 ... 33 5.2.3投影片內容與比對結果之影響 ... 37 5.2.4影片拍攝品質與比對結果之影響 ... 42 5.3 總結 ................. 44 第六章 結論與未來研究..... 46 6.1 結論 ................. 46 6.2 未來研究 ............. 47 參考文獻 .................. 48

    參考文獻

    [1] 暨南大學-語音網頁同步遠距教學系統 http://wsml.csie.ncnu.edu.tw/.
    [2] 國立臺灣師範大學教學影片輔助學習網站
    http://gtsvr1.dmc.ntnu.edu.tw/NGL/course.php.
    [3] 中山大學-網路大學 http://cu.nsysu.edu.tw/.
    [4] Stanford online http://stanford-online.stanford.edu/.
    [5] Georgia Institute of Technology http://www.cc.gatech.edu/.
    [6] G. Abowd, "Teaching and Learning as Multimedia Authoring: The Classroom 2000 Project," ACM Journal of Multimedia, pp. 187-198, 2000.
    [7] F. Ackermann, "High precision digital image correlation," Proceedings of 39th Photogrammetric Week, Institute of Photogrammetry, University of Stuttgart,
    pp. 231-243, 1983.
    [8] B. Ardhendu, L. Denis, and I. Rolf, "Visual Signature based Identification of Low-resolution Document Images," Proceedings of the ACM symposium on Document Engineering, Milwaukee, Wisconsin, 2004.
    [9] B. Ardhendu, L. Denis, and I. Rolf, "Influence of Fusion Strategies on Feature-based Identification of Low-resolution Documents " Proceedings of the ACM symposium on Document Engineering, Bristol, United Kingdom, vol. 1, pp. 20-22, 2005.
    [10] A. Behera, D. Lalanne, and R. Ingold, "Enhancement of Layout-based Identification of Low-resolution Documents using Geometrical Color Distribution," Proceedings of 8th International Conference on Document
    Analysis and Recognition, Seoul, Korea, Vol.1, pp. 468-472, 2005.
    [11] E. Berna, J. Jonathan, Hull, and L. Dar-Shyang, "Linking Multimedia Presentations with their Symbolic Source Documents: Algorithm and Applications " Proceedings of 11th ACM International Conference on Multimedia, Berkeley, CA, pp. 498-507, 2003.
    [12] K. L. Boyer and A. C. Kak, "Structural stereopsis for 3-d vision," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, pp. 144-166, 1988.
    [13] D. Chen, J. M. Odobez, and H. Bourlard, "Text detection and recognition in images and video frames," Pattern Recognition, vol. 37, pp. 595-608, 2004.
    [14] O. De Vel and A. S., "Object recognition using random imagelines," Image and Vision Computing, vol. 18, no. 3, pp. 193-198, 2000.
    [15] M. El Ansari, L. Masmoudi, and L. Radouane, "A new region matching method for stereoscopic images," Pattern Recognition Letters, vol. 21, pp. 283-294, 2000.
    [16] A. Ferro, G. Gallo, R. Giugno, and A. Pulvirenti, "Best-match retrieval for structured images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 7, pp. 707-718, 2001.
    [17] C. Garcia and X. Apostolidis, "Text detection and segmentation in complex color images," Proceedings of IEEE International Conference on Acsustics, Speech and Signal Processing, Istanbul, Turkey, vol. 6, no. 4, pp. 2326-2329,
    2000.
    [18] G. L. Gimelfarb and A. K. Jain, "On retrieving textured images from an image database," Pattern Recognition, vol. 29, pp. 1461-1483, 1996.
    [19] J. S. Greenfeld, S. Schulte-Hinsken, and W. Muller, "A strategy for automated stereo model orientation using a feature-based matching procedure," Proceedings of the American Society for Photogrammetry and Remote Sensing,
    Baltimore, Maryland, vol. 5, pp. 131-140, 1991.
    [20] J. W. Han and L. Guo, "A shape-based image retrieval method using salient edges," Signal Processing-Image Communication, vol. 18, pp. 141-156, 2003.
    [21] X. Jie, H. Xian-Sheng, C. Xiang-Rong, W. Liu, and Z. Hong-Jiang, "A video text detection and recognition system," Proceedings of IEEE International Conference of Multimedia and Expo, Tokyo, Japan, pp. 873-876, 2001.
    [22] J. S. Kim, S. C. Park, and S. H. Kim, "Text Locating from Natural Scene Images Using Image Intensities," Proceedings of the 8th International Conference on Document Analysis and Recognition, Washington, DC, vol. 2, pp.655-659 , 2005.
    [23] S. W. Lee and D. S. Ryu, "Parameter-free geometric document layout analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 1240-1256, 2001.
    [24] M. Lemmens, "A survey on stereo matching techniques," Int. Arch. Photogramm. Remote Sensing, vol. 27, pp. 11-23, 1988.
    [25] M. X. Li, "High-Precision Relative Orientation Using Feature-Based Matching Techniques," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 44, pp. 311-324, 1990.
    [26] L. Lin and T. Chew Lim, "Text extraction from name cards with complex design," Proceedings of the 8th International Conference on Document Analysis and Recognition, Washington, DC, vol. 2, pp. 977-980, 2005.
    [27] T. S. Mahmood and S. Srinivasan, "Detecting topical events in digital video," ACM Journal of Multimedia, pp. 85-94, 2000.
    [28] S. Mukhopadhyay and B. Smith, "Passive Capture and Structuring ofleetures," ACM Journal of Multimedia, pp. 477-487, 1999.
    [29] G. Pass and R. Zabih, "Histogram refinement for Content-based image retrieval," Workshop on Applications of Computer Vision, pp. 96-102, 1996.
    [30] H. Radu and S. Thomas, "Structural Matching for Stereo Vision," Pattern Recognition, 9th International Conference, vol. 1, pp. 439-445, 1998.
    [31] C. W. Richard and R. H. Edwin, "Structural matching by discrete relaxation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 634-648, 1997.
    [32] J. Sauvola and M. Pietikainen, "Adaptive document image binarization," Pattern Recognition, vol. 33, pp. 225-236, 2000.
    [33] M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation," Journal of Electronic Imaging, vol. 13,
    pp. 146-168, 2004.
    [34] S. Sriprakash and S. Sudeep, "An approximate algorithm for structural matching of images," Proceedings of International Conference on Image Processing, Chicago, IL, vol. 1, pp. 798-802, 1998.
    [35] Y. N. Wang, "Principles and applications of structural image matching," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 53, pp. 154-165, 1998.
    [36] L. Ying and N. Sargur, Srihari, "Document Image Binarization Based on Texture Features," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 540-544, 1997.
    [37] Q. Yuan and C. L. Tan, "Text extraction from gray scale document images using edge information," Proceedings of 6th International Conference on Document Analysis and Recognition, Seattle, WA, pp. 302-306, 2001.

    QR CODE