簡易檢索 / 詳目顯示

研究生: 許寧珊
Hui, Ning-Shan
論文名稱: 臺灣脊樑山脈南部橫貫公路之磁性組構研究與隱示
Study of Magnetic Fabrics and Its Implications along the Southern Cross-Island Highway of the Backbone Range, Taiwan
指導教授: 葉恩肇
Yeh, En-Chao
口試委員: 葉恩肇
Yeh, En-Chao
李建成
Lee, Jian-Cheng
李德貴
Lee, Teh-Quei
周祐民
Chou, Yu-Min
口試日期: 2024/01/29
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 106
中文關鍵詞: 脊樑山脈南部橫貫公路磁性組構磁感率異向性磁感率橢球體變形演化歷史
英文關鍵詞: Backbone Range, Southern Cross Island Highway, Magnetic fabric, Anisotropy of Magnetic Susceptibility, Magnetic Susceptibility ellipsoid, Evolution of deformation history
DOI URL: http://doi.org/10.6345/NTNU202401020
論文種類: 學術論文
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣位於歐亞板塊及菲律賓海板塊相互隱沒的交界帶,如此特殊的地體構造使臺灣擁有複雜的地質演化史。其中,脊樑山脈經歷多次且長時間的變動,但其變形歷史尚未釐清,由於磁性組構已可應用於造山帶應變史之研究,因此本研究藉由磁感率異向性實驗解析橫跨脊樑山脈南段的應變特徵,進而探究脊樑山脈的變形歷史。本研究區域位於臺灣南部橫貫公路的東段,由埡口向東至初來,橫跨畢祿山層、太魯閣帶、玉里帶、初來層四個地質單元。野外工作主要為沿線觀察露頭,記錄構造位態並採集定向岩石樣本。室內將定向樣本製備成每邊長2.2公分的正立方體,利用非均向磁感率測磁儀測得樣本的三軸磁感率方向與數值,且將測量所得的磁感率橢球體視作應變橢球使用,建立脊樑山脈南段的東-西向的應變剖面,並配合四種不同磁性礦物鑑定實驗加以確認磁性礦物種類,以評估磁感率橢球體變形是否可反應構造變形。
    透過磁性礦物的辨認,發現研究區域以順磁性礦物為主,鐵磁性礦物比例較少,其中磁黃鐵礦只分布於板岩區,磁鐵礦分布於板岩區及壽豐剪切帶圍岩處。此外,雖磁黃鐵礦的平均磁感率與異向性可能存在明顯正相關之結果,但鐵磁性礦物於樣本中的含量較少,可推測研究區域的磁感率橢球體變形並非受磁性礦物影響,而是構造變形所致。磁感率研究結果顯示,磁性組構與岩石組構之間位態相互吻合,由西到東,磁性線理傾向由東南向轉為東北方向與西南方向,磁性葉理由向東傾沒轉為向西傾沒,由此磁性組構位態方向特徵性可將研究區域劃分為A-E區段。整個南橫東段剔除高應變區的資料,隨著變形強度由西向東先略升後遞減,磁感率橢球體形狀參數變化,大致顯示A區段由橢球狀至平板狀,D區段由平板狀至橢球似雪茄狀,其餘B、C及E區段以平板狀為主。將Flinn diagram與T-Pj路徑演化圖結合觀察發現,隨著由西到東,因應力場改變使得K1軸轉換方向,且變形路徑於A-C-D區段不同。A區域的橢球形狀處於橢球偏平板狀並K1軸方向指向東南方,到C區域時變形強度較A區域略高,橢球形狀為平板狀並K1軸方向轉為東北-西南方向,最後至D區域時變形強度低於C區域,橢球形狀由平板狀變至橢球狀並K1軸方向指向東北-西南方向。
    綜合以上結果,磁感率橢球體的變形實驗可以提供南橫區域的變形演化歷程的資料。推測由板塊碰撞開始,形成第一期褶皺,並於最西側的A區域保留此期的構造資料,向東傾沒的劈理及東南方向的線理。之後弧陸碰撞加入造山,改變應力場形成第二期褶皺,於東側片岩區形成向西傾沒的劈理,並因南向側向擠壓於C及D區域產生東北-西南方向的線理,如此南橫區域才有現今的地質變形現象。

    Taiwan is located at the convergent boundary between the Eurasian Plate and the Philippine Sea Plate, resulting in a unique tectonic setting that has led to a complex geological evolution. Among these features, the Central Range has undergone multiple tectonic events, yet its deformation history remains unclear. Magnetic fabrics studies have proven effective in studying the strain history of orogenic belts. Therefore, this research utilizes anisotropy of magnetic susceptibility experiments to decipher the strain characteristics across the southern segment of the Central Range, aiming to explore its deformation history.
    The study area spans the eastern section of the Southern Cross-Island Highway in southern Taiwan, from Yakou to Chulai, traversing four geological units: the Pilushan Formation, the Tailuko Belt, the Yuli Belt, and the Chulai Formation. Fieldwork primarily involved outcrop observations along the road, structure examination, and oriented samples collection. In the laboratory, these samples were prepared into 2.2 cm cubic specimens, and parameters of magnetic susceptibilities were measured using a Kappabridge KLY-3. The measured magnetic susceptibility ellipsoids were treated as strain ellipsoids, establishing an east-west strain profile across the southern Central Range. Additionally, four different magnetic mineral identification experiments were conducted to confirm the types of magnetic minerals present, assessing whether magnetic susceptibility ellipsoid can be representative of structural deformation.
    Through magnetic mineral identification, it was discovered that the study area is predominantly composed of paramagnetic minerals, with a lesser proportion of ferromagnetic minerals. Pyrrhotite is found only in slate areas, while magnetite is present in both slate areas and the surrounding rocks of the Shoufeng Shear Zone. Despite the apparent positive correlation between average magnetic susceptibility and anisotropy of pyrrhotite, the low content of ferromagnetic minerals in the samples suggests that the shape and orientation of magnetic susceptibility ellipsoid in the study area is more likely influenced by structural deformation rather than magnetic minerals.
    The results of magnetic susceptibility study indicate that the magnetic fabric aligns with the rock fabric. From west to east, the trend of magnetic lineations shifts from southeast to northeast and southwest directions, while the rock foliations change from eastward dipping to westward dipping, allowing dividing the study area into segments A to E. Excluding data from high-strain zones in the eastern section of the Southern Cross-Island Highway, the overall strain intensity increases slightly and then decrease from west to east, reflected in changes in magnetic susceptibility ellipsoid shape parameters: segment A changes from oblate to prolate, segment D from prolate to cigar-shaped, and segments B, C, and E predominantly oblate.
    Integration of Flinn diagrams and T-Pj evolutionary paths elucidates the deformation paths in the Southern Cross-Island region. As stress fields change from west to east, the orientation of the K1 axis shifts, and also deformation paths varies in segment A, C and D. Sequentially from segments A to C to D, the ellipsoidal shapes evolve: segment A exhibits an ellipsoid to oblate shape with K1 axis trending southeast, segment C shows slightly higher intensity than A with a oblate shape and K1 axis trending northeast-southwest, and segment D exhibits lower intensity than C with an oblate to ellipsoid shape and K1 axis trending northeast-southwest.
    Based on the results above, the deformation experiments using magnetic susceptibility ellipsoids have been provide essential data to constrain the deformation evolution in the Southern Cross-Island Highway region. The process began with plate collisions, initiating the first phase of folding. Structural data from this phase are preserved in the westernmost A area, characterized by east-dipping cleavages and southeast-trending lineations. Subsequently, arc-continent collisions became the dominant force in mountain building, altering the stress field and causing the second phase of folding. In the eastern schist areas, west-dipping cleavages are preserved developed. And due to southward lateral extrusion in areas C and D, northeast-southwest trending lineations have formed. These processes have shaped the current geological deformation pattern of the Southern Cross-Island Highway region.

    致謝 I 摘要 III Abstract V 目錄 IX 圖目錄 XI 表目錄 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 前人文獻 6 第二章 地質背景 11 2.1 臺灣大地構造 11 2.2 區域背景 14 2.2.1 地層 14 2.2.2 地質構造 15 第三章 研究方法 17 3.1 野外工作 18 3.2 樣本製備 20 3.3 磁感率異向性 21 3.3.1 磁感率原理 21 3.3.2 磁感率橢球體三軸 22 3.3.3 磁性參數之定義與計算 23 3.4 磁性礦物分析 25 3.4.1 磁性遲滯曲線實驗 25 3.4.2 溫度磁感率實驗 28 3.4.3 一階反轉曲線 29 3.4.4 低溫磁學分析 30 第四章 結果 31 4.1 磁性礦物分析 31 4.2 區域地質構造 40 4.3 橢球體主軸位態與空間分布 42 4.4 磁性參數分布 45 4.5 變形路徑 49 第五章 討論 53 5.1 區域構造 53 5.2 變形路徑 55 5.3 南橫的變形演化 58 第六章 結論 61 參考文獻 63 附錄一 樣本相關資訊 71 附錄二 樣本照片 73 附錄三 磁感率異向性實驗資料 77 附錄四 磁性參數資料 85 附錄五 磁性礦物分析結果 93 附錄六 口試建議與提問 103

    Angelier, J. (1986) Geodynamics of the Eurasia-Philippine Sea plate boundary. Special Issue, Tectonophysics, 125, IX-X.
    Aubourg, C., Hebert, R., Jolivet, L., and Cartayrade, G. (2000) The magnetic fabric of metasediments in a detachment shear zone: the example of Tinos Island (Greece). Tectonophysics, 321, 219-236.
    Aubourg, C., Smith, B., Bakhtari, H., Guya, N., Eshraghi, S.A., Lallemant, S., Molinaro, M., Braud, X., and Delaunay, S. (2004) Post-Miocene shortening pictured by magnetic fabric across the Zagros-Makran Syntaxis. In "Orogenic curvature: integrating paleomagnetic and structural analyses." (A. J. Sussman, and A. B. Weil, Eds.). Geological Society of America special paper, Boulder, Colorado, 383, 17-40.
    Aubourg, C. and Pozzi, J.P. (2010) Toward a new b250 °C pyrrhotite–magnetite geothermometer for claystones. Earth and Planetary Science Letters, 294, 47-57.
    Balsley, J.R. and Buddington, A.F. (1960) Magnetic susceptibility anisotropy and fabric of some Adirondack granites and orthogneisses. American Journal Science, 258A, 6-20.
    Beyssac, O., Simoes, M., Avouac, J.P., Farley, K.A., Chen, Y.G., Chan, Y.C., and Goffe, B. (2007) Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26, TC6001, doi:10.1029/2006TC002064.
    Borradaile, G.J. (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156, 20.
    Borradaile, G. J. and Jackson, M. (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks, Geological Society, London, Special Publications, 238, 299-360, doi: 10.1144/GSL.SP.2004.238.01.18.
    Borradaile, G. J. and Jackson, M. (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). Journal of Structural Geology, 32, 1519-1551.
    Byrne, T., Chojnacki, M., Lewis, J.,Lee, J.C., Ho, G.R., Yeh, E.C., Lee, Y.H., Tsai, C.H., Evans, M., Webb, L. (2024) Tectonic exhumation of a metamorphic core in an arc-continent collision during oblique convergence, Taiwan. Progress in Earth and Planetary Science, 11, 23.
    Chapple, W.M. (1978) Mechanics of thin-skinned fold-and-thrust belts. Geological Society of America Bulletin, 89, 1189-1198.
    Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y. and Lee, Y. H. (2017) A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan, Tectonics, 36, 188-206, doi:10.1002/2016TC004383.
    Clark, M. B., Fisher, D. M., and Lu, C.Y. (1992) Strain variation in the Eocene and older rocks exposed along the central and southern Cross-Island Highways, Taiwan, Acta Geologica Taiwanica, 30, 1-10.
    Davis, D., Suppe, J., Dahlen, F.A. (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88 (B2), 1153–1172.
    Dahlen, F.A., Suppe, J., and Davis, D. (1984) Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory. Journal of Geophysical Research, 89 (B12), 10087-10110.
    Dekkers, M. J., Mattéi, J. L., Fillion, G., and Rochette, P. (1989) Grain‐size dependence of the magnetic behavior of pyrrhotite during its low temperature transition at 34K. Geophysical Research Letters, 16, 8, 855-858.
    Fillion, G., and Rochette, P. (1988). The low temperature transition in monoclinic pyrrhotite. Journal de Physique. Colloques, 49(C8), 907-908.
    Fisher, D.M. (1999) Orogen-parallel extension in the eastern Central Range of Taiwan. Journal of the Geological Society of China, 42, 41-58.
    Flinn, D. (1962) On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society of London, 118, 385-433.
    Ghebreab, W., Kontny, A., and Greiling, R.-O. (2007) Fabric evolution across a discontinuity between lower and upper crustal domains from field, microscopic, and anisotropy of magnetic susceptibility studies in central eastern Eritrea, NE Africa. Tectonics, 26, TC3015.
    Graham, J.W. (1966) Significance of magnetic anisotropy in Appalachian sedimentary rocks. In Steinhart, J.S., and Smith, T.J. (eds.), The Earth Beneath the Continents. American Geophysical Union, 627-648.
    Horng, C.S., Huh, C.A., Chen, K.H., Lin, C.H., Shea, K.S., and Hsiung, K.H. (2012) Pyrrhotite as a tracer for denudation of the Taiwan orogen, Geochemistry Geophysics Geosystems, 13, Q08Z47, doi:10.1029/2012GC004195.
    Ho, G.R., Byrne, T.B., Lee, J. C., Mesalles, L., Lin, C.W., Lo, W., Chang, C.P. (2022) A new interpretation of the metamorphic core in the Taiwan orogen: A regional-scale, left-lateral shear zone that accommodated highly oblique plate convergence in the Plio-Pleistocene. Tectonophysics, 833, 229332.
    Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82.
    Hrouda, F. (2007) Magnetic susceptibility, anisotropy. Encyclopedia of geomagnetism and paleomagnetism, 546-560.
    Huang, T.Y., Gung, Y., Kuo, B.Y., Chiao, L.Y., and Chen, Y.N. (2015). Layered deformation in the Taiwan orogen. Science, 349(6249), 720–723.
    Hung, J.H., Wiltschko, D.V., Lin, H.C., Hickman, J.B., Fang, P., and Bock, Y. (1999) Structure and motion of the southwestern Taiwan fold-and-thrust belt. Journal of Terrestrial, Atmospheric and Oceanic Sciences, 10 (3), 543-568.
    Hunt, C.P., Moskowitz, B.M., and Banerjee, S.K. (1995) Magnetic Properties of Rocks and Minerals. Rock Physics & Phase Relations: A Handbook of Physical Constants, 3, 189-204.
    Jelinek, V. (1981) Characterization of the magnetic fabric of the rocks. Tectonophysics, 79, 63-67.
    Lee, Y.H., Byrne, T. B., Lo, W., Wang, S.J., Tsao, S.J., Chen, C.H., Yu, H.C., Tan, X., Soest, M.v., Hodges, K., Mesallesa, L., Robinson, H., and Fosdick, J.C. (2022) Out of sequence faulting in the backbone range, Taiwan: Implications for thickening and exhumation processes. Earth and Planetary Science Letters, 594, 117711.
    Liu T. K. (1982) Tectonic implication of fission track ages from the Central Range, Taiwan. Proceedings of the Geological Society of China, 25, 22-37.
    Malavieille, J. and Trullenque, G. (2009) Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: insights from analogue modeling. Tectonophysics 466, 377-394.
    Mesalles, L., Lee, Y.H., Ma, T., Tsai, W., Tan, X.B., and Lee, H.Y. (2020) A Late-Miocene Yuli belt? New constraints on the eastern Central Range depositional ages. Journal of Terrestrial, Atmospheric and Oceanic Sciences, 31, 4, 403-414.
    Mondro, C. A., Fisher, D., and Yeh, E.C. (2017) Strain histories from the eastern Central Range of Taiwan: A record of advection through a collisional orogeny. Tectonophysics, 705, 1-11.
    Mouthereau, F. and Petit, C. (2003) Rheology and strength of the Eurasian continental lithosphere in the foreland of the Taiwan collision belt: constraints from seismicity, flexure, and structural styles. Journal of Geophysical Research, 108 (B11), 2512, doi:10.1029/2002JB002098.
    Muxworthy, A.R., and McClelland, E. (2000) Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophysical Journal International, 140 (1), 101-114.
    Nagata, T. (1961) Rock Magnetism. Maruzen, Tokyo, 350.
    Ozdemir, O. and Dunlop, D. J. (1993) The effect of oxidation on the verwey transition in magnetite. Geophysical research letters, 20, 16, 1671-1674.
    Roberts, A. P., Pike, C. R., and Verosub, K. L. (2000) First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. Journal of geophysical research, 105, B12, 28461-28475.
    Rochette, P. (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 9, 8, 1015-1020.
    Rochette, P., Jackson, M., and Aubourg, C. (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Geophysics, 30, 3, 209-226.
    Siegesmund, S., Ullemeyer, K., and Dahms, M. (1995) Control of magnetic rock fabrics by mica preferred orientation: a quantitative approach. Journal of Structural Geology, 17, 1601-1613.
    Stacey, F. D., Joplin, G., and Lindsay, J. (1960) Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia. Pure and Applied Geophysics, 47, 30-40.
    Stanley, R.S., Hill, L.B., Chang, H.C., and Hu, H.N. (1981) A transect through the metamorphic core of the central mountains, southern Taiwan : Geological Society of China Memoir, 4, 443-473.
    Suppe, J. (1981) Mechanics of mountain-building and metamorphism in Taiwan : Geological Society of China Memoir, 4, 67-89.
    Taso, S., Li, T.C., Tien, J.L., Chen, C.H., Liu, C.H. (1992) Illite crystallinity and fission-track ages along the east central cross-island highway of Taiwan. Acta Geological Taiwanica, no.30, 45-64.
    Tillman, K.S. and Byrne, T.B. (1995) Kinematic analysis of the Taiwan slate belt. Tectonics, 14, 322-341.
    Verwey, E.J.W. (1939) Electronic conduction of magnetite(Fe3O4) and its transition point at low-temperature. Nature, 44, 327-328.
    Wehland, F., Stancu, A., Rochette, P., Dekkers, M. J., and Appel, E. (2005) Experimental evaluation of magnetic interaction in pyrrhotite bearing samples. Physics of the Earth and Planetary Interiors, 153, 181-190.
    Wu, F.T., Rau, R.J., and Salzberg, D. (1997) Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274, 191-220.
    Yui, T.F., and Chu, H.T. (2000) ‘Overturned’ marble layers: evidence for upward extrusion of the Backbone Range of Taiwan. Earth and Planetary Science Letters, 179, 351-361.
    Zhang, L., Li, H., Ferré, E. C., Sun Z. M., Chou, Y. M., Cao, Y., Wang, H., Zheng, Y., Li, C., Hosseinzadehsabeti, E. (2024) Focal mechanism of a Late Triassic large magnitude earthquake along the Longmen Shan fault belt, eastern Tibetan Plateau. Journal of Structural Geology, Volume 178, 105015, ISSN 0191-8141.
    丹桂之助 (1944) 烏來統の諸層特?四稜砂岩層、白冷層、新高層の同時性?就いて(Ⅱ)。臺灣博物學會會報,第34卷,第250號,第215-223頁。
    何春蓀 (1986) 台灣地質概論。經濟部中央地質調查所,共164頁。
    何春蓀 (2006) 台灣地質概論第二版。經濟部中央地質調查所,共164頁。
    何恭睿 (2015)大南澳片岩的構造演化歷史-以和平、萬榮與南部橫貫公路為例。國立臺北科技大學工程科技研究所博士學位論文,共95頁。
    吳東嶽 (2005) 軟岩邊坡漸進式破壞之機制探討與數值模擬。國立交通大學土木工程學系碩士班碩士論文,共174頁。
    吳曉明 (1996) 臺灣南部橫貫公路埡口至初來地區之岩石組織度及地質構造研究。國立臺灣大學地質研究所碩士論文,共101頁。
    李元希 (1996) 南橫大關山隧道至出來間地質構造的演化。經濟部中央地質查所八十五年度研究發展報告,85-020,共53頁。
    李元希 (1997) 台灣中央山脈中段在蓬萊運動中的構造演化。國立台灣大學地質學研究所博士論文,共202頁。
    紀建宇 (2011) 中央山脈玉里-池上地區地質構造與剪切帶研究。國立成功大學地球科學研究所碩士論文。
    陳文山、鍾孫霖、李元希 (2013a) 大南澳片岩玉里帶的碎屑鋯石鈾鉛定年。2013年臺灣地球科學聯合學術研討會,中壢,臺灣。論文摘要。
    陳文山、黃奕彰、劉丞浩、馮瀚亭、鍾孫霖、李元希 (2014b) 大南澳變質雜岩的鈾鉛定年研究-探討中生代臺灣地區歐亞板塊東緣的造山運動史。中華民國地質學會與中華民國地球物理學會103年年會暨學術討論會大會論文摘要集,354頁。
    陳肇夏和莊德永 (1989) 台灣中央山脈西南翼之地質、兼論中央山脈的一些主要構造。經濟部中央地質調查所彙刊,第5號,第1-18頁。
    陳肇夏和王京新 (1995) 臺灣變質相圖說明第二版。經濟部中央地質調查所特刊,第2號。
    彭筱君 (2015) 臺灣北部造山帶磁性組構與古地磁之研究。國立臺灣師範大學地球科學研究所碩士論文,共78頁。
    鄧屬予(2007)臺灣第四紀大地構造。經濟部中央地質調查所特刊,第十八號,共24頁。
    顏滄波 (1963) 臺灣大南澳片岩區中之變質帶。中國地質學會會刊,第5號,第101-108頁。
    顏滄波、吳景祥、莊德永 (1984) 台灣南部橫貫公路沿線之地質。經濟部中央地質調查所特刊,第3號,第11-23頁。

    無法下載圖示 電子全文延後公開
    2026/08/01
    QR CODE