簡易檢索 / 詳目顯示

研究生: 裘文馥
論文名稱: 聚球藻RF-1韻律蛋白COP23特性之研究
指導教授: 童武夫
Tong, Wu-Fu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 65
中文關鍵詞: 聚球藻RF-1概日韻律光質
論文種類: 學術論文
相關次數: 點閱:515下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 韻律蛋白COP23(Circadian Oscillating Protein, 23 kDa)是位於聚球藻RF-1細胞膜上的蛋白質,其mRNA的轉錄以及蛋白質的合成、含量變化與分解,均具有概日韻律現象。本論文研究分兩部分:(一)探討不同光質與COP23概日韻律的建立和表現的關係。將聚球藻RF-1細胞分別以12小時光照(白、紅或藍光)、12小時黑暗的光暗週期馴化一段時間後,改置於連續光照(free running time)下的第25小時開始,每4小時取樣一次,利用SDS-PAGE及西方轉漬法(western blotting)分析COP23的表現,實驗結果顯示,不論是白、紅或藍光均可建立其概日韻律。若以短暫的遠紅光打斷馴化過程中之光週期時,其韻律週期仍舊存在,由此推測聚球藻RF-1之COP23概日韻律的建立與表現與光敏素無關,應有其他的光接受器(photoreceptors)參與其訊息傳遞路徑。(二)建立聚球藻RF-1的轉殖系統。本研究嘗試利用自然轉型法及電穿孔法將質體送入聚球藻RF-1中,以建立聚球藻RF-1的轉殖系統,但未成功。

    中文摘要…………………………………….………………………. Ⅰ 英文摘要……………………….……………….…….…….……….. Ⅱ 目錄……………………………………………………….…………. Ⅲ 圖表目次………………………………………………….. .…….…. Ⅵ 縮寫對照表………………………………………….………………. Ⅶ 壹、緒論……………………………………..…………..………….. 1 貳、材料與方法………………………………………….…….…… 9 1. 藻株及其培養方法…………………………... .…….……...... 8 9 2. 不同光質馴化COP23概日韻律的實驗處理………….…….. 9 3. 膜蛋白質的萃取和分析…………………………….………... 10 3.1 細胞的收集…………………………………….………... 10 3.2 膜蛋白質抽取…………………………….…….……...... 10 3.3 膜蛋白的定量...........………………………….…….…... 10 4. SDS聚丙烯醯胺電泳分析.............................................. 11 4.1 SDS聚丙烯醯胺電泳(SDS-PAGE)............................... 11 4.2計算電泳帶中蛋白質之相對含量……….…. .…….…..... 12 5. COP23多株抗體之製備………………….....…….………...... 12 5.1 COP23重組蛋白之製備……………………....………..... 12 5.2多株抗體之製備及效價測試……………………….......... 13 5.3多株抗體與抗原結合最佳濃度之測試…………………. 14 6. 西方轉漬法(Western Blotting)……………………….….…. 14 6.1蛋白質的解析及漬……………………………………...... 14 6.2 COP23的偵測……………………………......................... 14 7. 聚球藻RF-1之DNA製備………………………................... 15 8. 聚球藻RF-1之基因轉殖…………………….......................... 16 8.1 勝任細胞E. coli DH5α之製備及保存……….................. 16 8.2 質體pRL271之製備及保存…………….......................... 17 8.3 自然轉型法(Nature transformation)…………….......... 18 8.4 電穿孔法(Electrooporation)………………………….. 18 參、結果………………...................................................................... 20 1. 不同光質的設定對COP23含量概日韻律的影響……........... 20 1.1 白光黑暗建立COP23概日韻律………………............... 20 1.2紅光黑暗建立的COP23概日韻律……………................. 21 1.3藍光黑暗建立的COP23概日韻律………........................ 22 2. COP23多株抗體之製備……………........................………… 24 2.1 COP23重組蛋白之製備………………………….........… 24 2.2 COP23多株抗體之效價測試…………………….....…… 25 2.3多株抗體與抗原結合最佳濃度之測試………….............. 26 3. 西方轉漬法檢測不同光質的設定對COP23含量概日韻律的影響........................................................................................ 27 3.1紅光黑暗建立COP23概日韻律………............................ 27 3.2藍光黑暗建立的COP23概日韻律………….................... 28 4. 聚球藻RF-1之基因轉殖測試…………….............................. 30 4.1自然轉型法………………….…......................................... 30 4.2電穿孔法……………………………….............................. 30 肆、討論……….................................................................................. 44 伍、參考文獻……………………………………….......................... 51 附錄一……………………………………………………….............. 60 附錄二……………………………………………………………...... 61 附錄三………………………….......................................................... 62 附錄四……………….......................................................................... 63 附錄五……………….......................................................................... 64 附錄六……………….......................................................................... 65

    周雪美 (1987) 二種單胞固氮藍綠藻之型態與生理特性的比較. 師大生物學報 22:33-43.
    林玫君 (2002) 環境因子對聚球藻RF-1光合作用的影響 國立台灣師範大學生物學系碩士論文.
    莊育嘉 (2003) 聚球藻RF-1之光敏素基因表現的研究. 大專生參與專題研究計畫成果報告.
    陳弘民 (1996) 聚球藻RF-1韻律基因的特性研究. 國立台灣師範大學生物學系碩士論文.
    蔡坤達 (2001) 光對原核型聚球藻RF-1品系(Synechococcus RF-1)韻律蛋白COP23分解的調控. 中國文化大學生物科技系碩士論文.
    Ahmad M (1999) Seeing the world in red and blue: insight into plant vision and photoreceptors. Current Opinion in Plant Biology 2: 230-235.
    Aldehni MF, Sauer J, Spielhaupter C, Schmid R, Forchhammer K (2003) Signal transduction protein pii is required for ntca-regulated gene expression during nitrogen deprivation in the cyanobacterium synechococcus elongatus strain pcc 7942. Journal of Bacteriology 185: 2582–2591.
    Anderson SL, McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. Journal of Bacteriology 173: 2761–2767.
    Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Reviews Genetics 6: 544 – 556.
    Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. Journal of Bacteriology 183: 2298-2305.
    Black TA, Cai Y, Wolk CP (1993) Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Molecular Microbiology 9: 77-84.
    Bold HC, Wynne MJ (1985) Introduction of the algae. 2nd ed., Prentice-Hall, Inc., New Jersey.
    Briggs WR, Olney MA (2001) Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiology 125: 85-88.
    Brown SA, Schibler U (1999) The ins and outs of circadian timekeeping. Current Opinion in Genetics and Development 9: 588-594.
    Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Applied Microbiology and Biotechnology 68: 283–291.
    Chen HM, Chien CY, Huang TC (1996) Regulation and molecular structure of a circadian oscillating protein located in the cell membrane of the prokaryote Synechococcus RF-1. Planta 199: 520-527.
    Chen TH, Chen TL, Hung LM, Huang TC (1991) Circadian rhythm in amino acid uptake by Synechococcus RF-1. Plant Physiology 97: 55-59.
    Chiang GG, Schaefer MR, Grossman AR (1992) Transformaiton of the filamentous cyanobacterium Fremyella diplosiphon by conjugation or electroporation. Plant Physiology and Biochemistry 30: 315-325
    Davis SJ, Vender AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 92: 179-182.
    Devlin PF (2002) Signs of the time: environmental input to the circadian clock. Journal of Experimental Botany 53: 1535-1550.
    Fankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216: 1-16.
    Fiedler B, Borner T, Wilde A (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochemistry and photobiology 81: 1481-1488.
    Fiedler S, Wirth R (1988) Transformation of bacteria with plasmid DNA by electroporation. Analytical Biochemistry 170: 38-44.
    Grobbelaar N, Huang TC, Lin HY, Chow TJ (1986) Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS Microbiology Letters 37: 173-177.
    Grobbelaar N, Lin HT, Huang TC (1987) Induction of a nitrogenase activity rhythm in Synechococcus RF-1 and the protection of its nitrogenase against photosynthetic oxygen. Current Microbiology 15: 29-33.
    Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H (2000) Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res 28: 2353-2362.
    Huang TC, Chen HM, Pen SY, Chen TH (1994) Biological clock in the prokaryote Synechococcus RF-1. Planta 193: 131-136.
    Huang TC, Chen TH (2003) Circadian rhythm of ATP contents in Synechococcus RF-1. Bioformosa 38(1): 1-5.
    Huang TC, Chou WM (1991) Setting of the circadian N2-fixing rhythm of the prokaryotic Synechococcus sp. RF-1 while its nif gene is repressed. Plant Physiology 96: 324-326.
    Huang TC, Chow TJ (1986) New type of nitrogen fixing unicellular cyanobacterium (blue green algae). FEMS Microbiology Letters 36: 109-110.
    Huang TC, Chow TJ (1990) Characterisation of the rhythmic nitrogen fixing activity of Synechococcus sp. RF-1 at the transcription level. Current Microbiology 20: 23-26.

    Huang TC, Chow TJ, Hwang IS (1988) The cyclic synthesis of the nitrogenase of Synechococcus RF-1 and its control at the transcription level. FEMS Microbiology Letters 50: 127-130.
    Huang TC, Pen SY (1994) Induction of a circadian rhythm in Synechococcus RF-1 while the cells are in a “suspended state”. Planta 193: 131-136.
    Huang TC, Tu J, Chow TJ, Chen TH (1990) Circadian rhythm of the prokaryote Synechococcus sp. Plant Physiology 92: 531-533.
    Huang TC, Wang ST, Grobbelaar N (1993) Circadian rhythm mutants of the prokaryotic Synechococcus RF-1. Current Microbiology 27: 249-254.
    Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CJ, Kondo T (1998) Expression of a clock gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281: 1519-1526.
    Iwasaki H, Kondo T (2000) The current state and problems of circadian clock studies in cyanobacteria. Plant and Cell Physiology 41: 1013–1020.
    Karen WS, Steve AK (2000) Circadian rhythm genetics: from flies to mice to humans. Nature Genetics 26: 23-27.
    Kevei E, Nagy F (2003) Phytochrome controlled signaling cascades in higher plants. Physiologia Plantarum 117: 305-313.

    Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Applied Microbiology and Biotechnology 58:123–137.
    Lamparter T, Mittmann F, Gartner W, Borner T, Hartmann E, Hughes J (1997) Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proceedings of the National Academy of Sciences 94: 11792-11797.
    Lin RF, Chou HM, Huang TC (1999) Priority of light/dark entrainment over temperature in setting the circadian rhythms of the prokaryote Synechococcus RF-1. Planta 209: 202-206
    Lin RF, Tsai KD, Huang TC (2003) Factors affecting the circadian degradation of COP23 in Synechococcus RF-1. Botanical Bulletin of Academia Sinica 44: 151-158.
    Matsunaga T, Takeyama H, Nakamura N (1990) Characterization of cryptic plasmids from marine cyanobacteria and construction of a hybrid plasmid potentially capable of transformation of marine cyanobacterium, Synechococcus sp., and its transformation. Applied Biochemistry and Biotechnology 24/25: 151-160.
    Millar AJ, Straume M, Chory J, Chua NH, Kay SA (1995) The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267: 1163-1166.
    Montgomery BL (2007) Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Molecular Microbiology 64: 16–27.
    Nakasugi K, Svenson CJ, Neilan BA (2006) The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 152: 3623-3631.
    Njus D, Sulzman FM, Hasting JW (1974) Membrane model for the circadian clock. Nature 248:116-120.
    Onai K, Morishita M, Kaneko T, Tabata S, Ishiura M (2004) Natural transformation of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: a simple and efficient method for gene transfer. Molecular Genetic Genomics 271: 50–59.
    Page TL (1994) Time is the essence: molecular analysis of the biological clock. Science 263: 1570-1572.
    Quail PH (1998) The photochrome family: dissection of functional roles and signaling pathways among family membranes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 353: 1399-1403
    Reaston J, van der Hondel CAMJJ, van Arke GA, Stewart WDP (1982) A physical map of plasmid pDU1 from the cyanobacterium Nostoc PCC 7524. Plasmid 7: 101-104.
    Rech EL, Ochatt SJ, Chand PK, Davey MR, Mulligan BJ, Power JB (1988) Electroporation increases dna synthesis in cultured plant protoplasts. Nature Biotechnology 6: 1091-1093.

    Schweiger HG, Schweiger M (1977) Circadian rhythms in unicellular organism: an endeavor to explain the molecular mechanism. International Review of Cytology 51: 315-342.
    Stanier RY, Kunidawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35: 171-205.
    Thiel T (1994) Genetic analysis of cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer, Dordrecht, 581-611
    Tolonen AC, Liszt GB, Hess WR (2006) Genetic manipulation of Prochlorococcus MIT9313: GFP expression on an RSF1010 plasmid and Tn5 transposition. Applied and Environmental Microbiology 72: 7607-7613.
    Tsinoremas NF, Kutach AK, Strayer CA, Golden SS (1994) Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and chromosomal recombination. Journal of Bacteriology 176:6764–6768.
    Vince-Pure D (1994) The duration of light and photoperiodic response. In: Kendrick RE, Kronenberg GHM (ed.). Photomorphogenesis in plants, Kluwer Academic Publ. 447-489.
    Yen UC, Huang TC, Yen TC (2004) Observation of the circadian photosynthetic rhythm in cyanobacteria with a dissolved-oxygen meter. Plant Science 166: 949–952.
    Yoshihara S, Geng XX, Okamoto S, Yura K, Murata T, Go M, Masayuki Ohmori M, Ikeuchi M (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiology 42: 63–73.

    下載圖示
    QR CODE