研究生: |
林育綺 Lin, Yu-Chi |
---|---|
論文名稱: |
鱗翅目刺蛾科幼蟲之刺與警戒色的起源與演化 The Origin and Evolution of the Spine and Aposematism in Slug Caterpillars (Lepidoptera: Limacodidae) |
指導教授: |
徐堉峰
Hsu, Yu-Feng |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 親緣關係 、特徵演化 、防禦 、平行演化 |
英文關鍵詞: | phylogeny, character evolution, defense, parallel evolution |
DOI URL: | http://doi.org/10.6345/NTNU202000391 |
論文種類: | 學術論文 |
相關次數: | 點閱:397 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
各式各樣防禦捕食者的策略在世界各地各類生態系出現,可見捕食是顯著而重要的演化驅力。在多樣的捕食策略中,刺是顯而易見的防禦策略,並且許多生物用以對抗天敵。鱗翅目的刺蛾幼蟲以多樣化著名且不同齡期間刺的形態會改變,正好適合作為研究防禦機制與其他特徵演化的材料。本研究第一章概括介紹刺蛾科的命名、生活史與分類處理狀況。第二章以飼養經驗與前人研究歸納多樣的刺蛾幼蟲類型,記錄種內不同齡期間刺形的變異情形,並且以電子顯微鏡比較其他防禦機制—刺毛—在刺蛾、毒蛾與枯葉蛾幼蟲的異同。第三章基於第二章的結果探討刺於刺蛾科內的演化。過去關於刺蛾的親緣關係研究主要基於美洲的樣本,其曾推論刺蛾之刺為單一起源並且無刺型幼蟲為祖先型。此推論與更早提出的假說相反,且刺蛾為廣分布的物種,加入其他地理區之樣本後結果不一定相同。因此,本研究第三章,首先取來自亞洲、澳洲、北美與南美的45個內群與8個外群之五個基因片段建立親緣關係樹,其後分析刺的特徵演化。研究結果顯示刺為單一起源,並且無刺型幼蟲多次獨立由有刺型幼蟲平行演化而來。本研究第三章,利用第二章所得之親緣關係樹進一步探討刺與警戒色的演化關係。根據前人研究,警戒色的防禦可分為公開防禦與不公開防禦。在公開防禦的警戒色演化方面,過去的研究曾提出不同的假說:警戒色演化出來之後,在刺的投資上可減少;由於刺的防禦屬於公開防禦,因此不需演化出強烈的警戒色;即使有刺為次級防禦,若演化出強烈的警戒色,仍會因為較易被天敵發現而使適存度下降。本研究以特徵演化探討刺的防禦強度與警戒色的對比強度之間的演化關係,結果顯示防禦強度增強,警戒色也隨之增強,除此之外本研究結果支持「警戒色演化出來之後,在刺的投資上可減少」之假說。
Anti-predator strategies occur in every biome of the world, implying that predation is a potent selective force and thus of immense ecological and evolutionary significance. Spines are one kind of obvious anti-predator strategy to avoid predation. Larvae of the family Limacodidae, commonly known as ‘slug’ caterpillars, are well known because of the widespread occurrence of spines with urticating properties, a morpho-chemical adaptive trait that has been demonstrated to protect the larvae from natural enemies. However, while most species are armed with rows of spines, slug caterpillars are morphologically diverse with some species lacking spines. Since the Limacodidae have various types of larvae, it provides great opportunities and materials to compare and understand the defensive mechanism in nature. The aim of this study is to investigate the spine evolution and the evolutionary relationships between spine and other traits. In chapter 1, the Limacodidae is general introduced. In chapter 2, the spine character are explored through rearing larvae of the Limacodidae; the types of slug caterpillars are recorded for making generalizations. Moreover, other defensive mechanism, such as spicules, on limacodids and other caterpillars are investigated and compared with scanning electron microscopy (SEM). Based upon the results achieved chapter 2, the character evolution are investigated in chapter 3. It has been demonstrated that the evolution of spines in slug caterpillars may have a single origin, and that this trait is possibly derived from non-stinging slug caterpillars, but these conclusions were based on limited sampling of mainly New World taxa; thus, the evolution of spines and other traits within the family remains unresolved. I analyzed morphological variation in slug caterpillars within an evolutionary framework to determine the spine evolution with samples from Asia, Australia, North America and South America. The phylogeny of the Limacodidae was reconstructed based on a multi-gene dataset comprising five molecular markers (5.6 Kbp: COI, 28S, 18S, EF-1α, and wingless) representing 45 species from 40 genera and eight outgroups. Based on this phylogeny, limacodids are inferred to evolve from a common ancestor in which the larval type possessed spines, and then slug caterpillars without spines evolved independently multiple times in different continents. In chapter 4, the correlation of the spines and the warning coloration is investigated. Aposematism is recognized as one of the important ways to avoid attacks from natural enemies. With regard to the previous aposematism studies about the initial evolution in overt defenses: in 1890, Poulton claimed that some colorations exaggerate threat posed by physical defenses; in 1986, Leimar et al. argued that aposematism may evolve when it presents a more cost-effective method of deterrence; in 2005, Speed and Ruxton suggested that investment in spines and toxins evolving but then diminishing as aposematic displays subsequently evolve; in 2019, Caro and Ruxton proposed that the investment in signaling about spines is lower. The evolution of aposematism in slug caterpillars is explored to examine the previous hypotheses. The results suggest that the conspicuousness is higher when the length of spines and protuberances is longer in nettle slug caterpillars.
Al-Asmari, A.K., Kunnathodi, F., AlSaadon, K. and Idris, M.M., 2016. Elemental analysis of scorpion venoms. Journal of Venom Research, 7, p.16.
Alberch, P. and Gale, E.A., 1985. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution, 39(1), pp.8-23.
Amundson, R., 2001. Adaptation, development, and the quest for common ground. In: S.H. Orzack and E. Sober, eds. Adaptation and optimality. Cambridge: Cambridge University Press. pp. 303-334.
Ashton, K.G., 2002. Do amphibians follow Bergmann’s rule? Canadian Journal of Zoology, 80(4), pp.708-716.
Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N. and Full, R.J., 2002. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 99(19), pp.12252-12256.
Battisti, A., Holm, G., Fagrell, G. and Larsson, S., 2011. Urticating hairs in arthropods: their nature and medical significance. Annual review of entomology, 56, pp.203-220.
Barnett, J.B., Scott-Samuel, N.E. and Cuthill, I.C., 2016. Aposematism: balancing salience and camouflage. Biology Letters, 12(8), p.20160335.
Bell, M.A., 1987. Interacting evolutionary constraints in pelvic reduction of threespine sticklebacks, Gasterosteus aculeatus (Pisces, Gasterosteidae). Biological Journal of the Linnean Society, 31(4), pp.347-382.
Bell, M.A., Francis, R.C. and Havens, A.C., 1985. Pelvic reduction and its directional asymmetry in threespine sticklebacks from the Cook Inlet region, Alaska. Copeia, 1985(2), pp.437-444.
Bidau, C.J. and Marti, D.A., 2008. A test of Allen’s rule in ectotherms: the case of two South American Melanopline grasshoppers (Orthoptera: Acrididae) with partially overlapping geographic ranges. Neotropical entomology, 37(4), pp.370-380.
Biodiversity Research Center (Academia Sinica of Taiwan), 2018. Catalogue of Life in Taiwan. Available at: <http://taibnet.sinica.edu.tw/> [Accessed 30 September 2018].
Brainerd, E.L., 1994. Pufferfish inflation: functional morphology of postcranial structures in Diodon holocanthus (Tetraodontiformes). Journal of morphology, 220(3), pp.243-261.
Brakefield, P.M., 2006. Evo-devo and constraints on selection. Trends in Ecology & Evolution, 21(7), pp.362-368.
Brooks, D.R., 1996. Explanation of homoplasy at differetn level of biological organization. In: M.J. Sanderson and L. Hufford, eds. Homoplasy: the recurrence of similarity in evolution. San Diego: Academic Press. pp.3-36.
Brower, A.V.Z. and DeSalle, R., 1998. Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect molecular biology, 7(1), pp.73-82.
Caro, T. and Ruxton, G., 2019. Aposematism: Unpacking the Defences. Trends in Ecology & Evolution, 34(7), pp.595-604.
Chalwatzis, N., Baur, A., Stetzer, E., Kinzelbach, R. and Zimmermann, F.K., 1995. Strongly expanded 18S rRNA genes correlated with a peculiar morphology in the insect order of Strepsiptera. Zoology, 98(2), pp.115-126.
Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P. and Zhao, S., 1995. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1α recovers morphology-based tree for Heliothine moths. Molecular biology and evolution, 12(4), pp.650-656.
Clements, A.N., 1951. On the urticating properties of adult Lymantriidae. In: Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 26(7‐9), pp.104-108.
Cock, M.J.W., Godfray, H.C.J. and Holloway, J.D., 1987. Slug and nettle caterpillars. The biology, taxonomy and control of the Limacodidae of economic importance on palms in South-east Asia. Wallingford: CAB International.
Common, I.F.B., 1990. Moths of Australia. Carlton: Melbourne University Press.
Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2018. Australian Moths Online. Available at: <http://www1.ala.org.au/> [Accessed 30 September 2018].
Cott, H.B., 1940. Adaptive coloration in animals. London: Methuen.
Culver, D. and Pipan, T., 2016. Shifting paradigms of the evolution of cave life. Acta Carsologica, 44(3), pp.415-425.
Cunningham, C.W., Omland, K.E. and Oakley, T.H., 1998. Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology & Evolution, 13(9), pp.361-366.
Darst, C.R. and Cummings, M.E., 2006. Predator learning favours mimicry of a less-toxic model in poison frogs. Nature, 440(7081), pp.208-211.
Darwin, F., 1887. The life and letters of Charles Darwin.
DeSalle, R., Gatesy, J., Wheeler, W. and Grimaldi, D., 1992. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science, 257(5078), pp.1933-1936. 10.1126/science.1411508.
Dyar, H.G. and Morton, E.L., 1985. The life-histories of the New York slug caterpillars. I. Journal of the New York Entomological Society, 3(4), pp.145-157.
Dyar, H.G., 1896. The life histories of the New York slug caterpillars. III-VI. Journal of the New York Entomological Society, 4(4), pp.167-190.
Dyar, H.G., 1907. The life histories of the New York slug caterpillars. XIX. Journal of the New York Entomological Society, 15(4), pp.219-226.
Dyar, H.G., Fernald, C.H., Hulst, G.D. and Busck, A., 1902. A list of the North American Lepidoptera and key to the literature of this order of insects. No. 52. US Government Printing Office.
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), pp.1792-1797.
Edmunds, J. and Edmunds, M., 1974. Polymorphic mimicry and natural selection: a reappraisal. Evolution, 28(3), pp.402-407.
Eecke, R.V., 1925. Fam. Cochlidionidae (Limacodidae). In: E. Strand, ed. Lepidopterorum catalogus, 32, pp.3-79.
Eldredge, N. and Cracraft, J., 1980. Phylogenetic Patterns and the Evolutionary Process. New York: Columbia University Press.
Endler, J.A., 1988. Frequency-dependent predation, crypsis and aposematic coloration. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 319(1196), pp.505–523.
Epstein, M.E., 1996. Revision and phylogeny of the Limacodid-group families, with evolutionary studies on slug caterpillars (Lepidoptera: Zygaenoidea). Smithsonian Contributions to Zoology, 582, pp.1-102.
Epstein, M.E. and Corrales, J.F., 2004. Twenty-five new species of Costa Rican Limacodidae (Lepidoptera : Zygaenoidea). Zootaxa, 701, pp.1-86.
Epstein, M.E., Geertsema, H., Naumann, C.M. and Tarmann, G.M., 1999. The Zygaenoidea. In: N.P. Kristensen, ed. Lepidoptera, Moths and Butterflies. Volume 1: Evolution, Systematics, and Biogeography. Berlin and New York: Walter de Gruyter. pp.159-180.
Espeland, M., Hall, J.P.W., DeVries, P.J., Lees, D.C., Cornwall, M., Hsu, Y.-F., Wu, L.-W., Campbell, D., Talavera, G., Vila, R., Salzman, S., Ruehr, S., Lohman, D.J. and Pierce, N.E., 2015. Ancient Neotropical origin and recent recolonisation: phylogeny and biogeography of the Riodinidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution, 93, pp.296-306.
Farris, J.S., Kluge, A.G. and Eckardt, M.J., 1970. A numerical approach to phylogenetic systematics. Systematic Zoology, 19(2), pp.172-189.
Felsenstein, J., 1985. Phylogenies and the comparative method. The American Naturalist, 125, pp.1-15.
Fisher, R.A., 1930. The genetical theory of natural selection. Oxford: Clarendon Press.
Forsman, A. and Merilaita, S., 1999. Fearful symmetry: pattern size and asymmetry affects aposematic signal efficacy. Evolutionary Ecology, 13(2), pp.131-140.
Giles, N., 1983. The possible role of environmental calcum levels during the evolution of phenotypic diversity in Outer Hebridean populations of the Three‐spined stickleback, Gasterosteus aculeatus. Journal of zoology, 199(4), pp.535-544.
Gordon, M.S. and Notar, J.C., 2015. Can systems biology help to separate evolutionary analogies (convergent homoplasies) from homologies? Progress in biophysics and molecular biology, 117(1), pp.19-29.
Gowda, J.H., 1996. Spines of Acacia tortilis: what do they defend and how? Oikos, 77(2), pp.279-284.
Grant, J.B., 2007. Ontogenetic colour change and the evolution of aposematism: a case study in panic moth caterpillars. Journal of Animal Ecology, 76, pp.439-447.
Greeney, H.F., Dyer, L.A. and Smilanich, A.M., 2012. Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebrate Survival Journal, 9(1), pp.7-34.
Grimaldi, D. and Engel, M.S., 2005. Evolution of the Insects. Cambridge and New York: Cambridge University Press.
Gross, H.P., 1978. Natural selection by predators on the defensive apparatus of the three-spined stickleback, Gasterosteus aculeatus L. Canadian Journal of Zoology, 56(3), pp.398-413.
Hall, B.K., 2007. Homoplasy and homology: dichotomy or continuum? Journal of Human Evolution, 52(5), pp.473-479.
Hampson, G.F., 1918. List of the families and subfamilies of the Lepidoptera with their types and a key to the families. In: F.R.S. Rothschild, E. Hartert and K. Jordan eds. Novitates Zoologicae, 25, pp.383-394.
Hanley, M.E., Lamont, B.B., Fairbanks, M.M. and Rafferty, C.M., 2007. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 8(4), pp.157-178.
Hart, N.S., 2001. The visual ecology of avian photoreceptors. Progress in retinal and eye research, 20(5), pp.675-703.
Hoogland, R., Morris, D. and Tinbergen, N., 1956. The spines of sticklebacks (Gasterosteus and Pygosteus) as means of defence against predators (Perca and Esox). Behaviour, 10(3/4), pp.205-236.
Hossie, T.J., Skelhorn, J., Breinholt, J.W., Kawahara, A.Y. and Sherratt, T.N., 2015. Body size affects the evolution of eyespots in caterpillars. Proceedings of the National Academy of Sciences, 112(21), pp.6664-6669.
Hossler, E.W., 2010. Caterpillars and moths: Part I. Dermatologic manifestations of encounters with Lepidoptera. Journal of the American Academy of Dermatology, 62(1), pp.1-10.
Inbar, M. and Lev-Yadun, S., 2005. Conspicuous and aposematic spines in the animal kingdom. Naturwissenschaften, 92(4), pp.170-172.
Jacobs, D.S., Babiker, H., Bastian, A., Kearney, T., van Eeden, R. and Bishop, J.M., 2013. Phenotypic convergence in genetically distinct lineages of a Rhinolophus species complex (Mammalia, Chiroptera). PLoS One, 8(12), p.e82614.
Jacobs, D.S., Mutumi, G.L., Maluleke, T. and Webala, P.W., 2016. Convergence as an Evolutionary Trade-off in the Evolution of Acoustic Signals: Echolocation in Horseshoe Bats as a Case Study. In: P. Pontarotti ed. Evolutionary Biology. Cham: Springer. pp.89-103.
James, D.G., 2017. The book of caterpillars: a life-size guide to six hundred species from around the World. Chicago: University of Chicago Press. pp. 296-311.
Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S. and Madden, T.L., 2008. NCBI BLAST: a better web interface. Nucleic acids research, 36, pp.W5-W9.
Kano, R., 1977. Lepidoptera (butterflies and moths). In: M. Sasa, H. Takahashi, R. Kano and H. Tanaka, eds. Animals of Medical Importance in the Nansei Islands in Japan. Tokyo: Shinjuku Shobo. pp.117-119.
Kawamoto, F., 1978. Studies on the venomous spicules and spines of moth caterpillars III. Scanning electron microscopic examination of spines and spicules of the slug moth caterpillar, Parasa consocia, and some properties of pain-producing substances in venoms. Japanese Journal of Medical Science and Biology, 31(3), pp.291-299.
Kawamoto, F. and Kumada, N., 1984. Biology and venoms of Lepidoptera. In: A.T. Tu, ed. Handbook of natural toxins. Vol. 2. Insect poisons, allergens, and other invertebrate venoms. New York and Basel: Marcel Dekker Inc. pp.291-330.
Lamb, T. and Beamer, D.A., 2012. Digits lost or gained? Evidence for pedal evolution in the dwarf salamander complex (Eurycea, Plethodontidae). PLoS One, 7(5), p.e37544. https://doi.org/10.1371/journal.pone.0037544.
Lanfear, R., Calcott, B., Ho, S.Y.W. and Guindon, S., 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular biology and evolution, 29(6), pp.1695-1701.
Lankester, E.R., 1870. On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annals and Magazine of Natural History, 6(31), pp.34-43.
Larson, A. and Losos, J.B., 1996. Phylogenetic systematics of adaptation. In: M. Rose and G. Lauder, eds. Adaptation. San Diego: Academic Press. pp.187-220.
Larson, G.L., 1976. Social behavior and feeding ability of two phenotypes of Gasterosteus aculeatus in relation to their spatial and trophic segregation in a temperate lake. Canadian Journal of Zoology, 54(2), pp.107-121.
Lederhouse, R.C., 1990. Avoiding the hunt: primary defenses of lepidopteran caterpillars. In: Insect Defences: Adaptive Mechanisms and Strategies of Prey and Predators. Albany: State University of New York Press. pp.175–190.
Lee, S. and Brown, R.L., 2008. Phylogenetic relationships of Holarctic Teleiodini (Lepidoptera: Gelechiidae) based on analysis of morphological and molecular data. Systematic Entomology, 33(4), pp.595-612.
Leuschner, C., 2000. Are high elevations in tropical mountains arid environments for plants? Ecology, 81(5), pp.1425-1436.
Lev-Yadun, S., 2001. Aposematic (warning) coloration associated with thorns in higher plants. Journal of Theoretical Biology, 210(3), pp.385-388.
Lichter‐Marck, I.H., Wylde, M., Aaron, E., Oliver, J.C. and Singer, M.S., 2015. The struggle for safety: effectiveness of caterpillar defenses against bird predation. Oikos, 124(4), pp.525–533.
Lindström, L., Alatalo, R.V., Lyytinen, A. and Mappes, J., 2001. Strong antiapostatic selection against novel rare aposematic prey. Proceedings of the National Academy of Sciences, 98(16), pp.9181-9184.
Lindström, L., Alatalo, R.V., Mappes, J., Riipi, M. and Vertainen, L., 1999. Can aposematic signals evolve by gradual change? Nature, 397(6716), pp.249-251.
Lo, P.C., Liu, S.H., Chao, N.L., Nunoo, F.K.E., Mok, H.K. and Chen, W.J., 2015. A multi-gene dataset reveals a tropical New World origin and early Miocene diversification of croakers (Perciformes: Sciaenidae). Molecular Phylogenetics and Evolution, 88, pp.132-143.
Losos, J.B., 2011. Convergence, adaptation, and constraint. Evolution, 65(7), pp.1827-1840.
Maddison, D.R., 1994. Phylogenetic methods for inferring the evolutionary history and processes of change in discretely valued characters. Annual review of entomology, 39(1), pp.267-292.
Maddison, W.P. and Maddison, D.R., 2017. Mesquite: a modular system for evolutionary analysis. Version 3.2. Available at: <http://mesquiteproject.org> [Accessed 24 June 2018].
Mäntylä, E., Klemola, T. and Laaksonen, T., 2011. Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia, 165(1), pp.143–151.
Mappes, J., Marples, N. and Endler, J.A., 2005. The complex business of survival by aposematism. Trends in ecology & evolution, 20(11), pp.598-603.
Marek, P.E. and Moore, W., 2015. Discovery of a glowing millipede in California and the gradual evolution of bioluminescence in Diplopoda. Proceedings of the National Academy of Sciences, 112(20), pp.6419-6424.
Marek, P., Papaj, D., Yeager, J., Molina, S. and Moore, W., 2011. Bioluminescent aposematism in millipedes. Current Biology, 21(18), pp.R680-R681.
Marples, N.M., Kelly, D.J. and Thomas, R.J., 2005. Perspective: the evolution of warning coloration is not paradoxical. Evolution, 59(5), pp.933-940.
Meyer, A., 1999. Homology and homoplasy: the retention of genetic programmes. Novartis Foundation symposium, 222, pp.141-53.
McGhee, G.R., 2011. Convergent evolution: limited forms most beautiful. Cambridge and London: The MIT Press.
McKitrick, M.C., 1993. Phylogenetic constraint in evolutionary theory: has it any explanatory power? Annual Review of Ecology and Systematics, 24(1), pp.307-330.
McNab, B.K., 1994. Energy conservation and the evolution of flightlessness in birds. The American Naturalist, 144(4), pp.628-642.
Miller, M.A., Pfeiffer, W. and Schwartz, T., 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). New Orleans, 14 November 2010. New York: LEEE.
Mooney, K.A., Gruner, D.S., Barber, N.A., VanBael, S.A., Philpott, S.M. and Greenberg, R., 2010. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants. Proceedings of the National Academy of Sciences, 107(16), pp.7335–7340.
Mullen, G.R., 2009. Moths and butterflies (Lepidoptera). In: G.R. Mullen and L.A. Durden eds. Medical and Veterinary Entomology. Amsterdam: Elsevier. pp.363-370.
Murphy, S.M., Leahy, S.M., Williams, L.S. and Lill, J.T., 2010. Stinging spines protect slug caterpillars (Limacodidae) from multiple generalist predators. Behavioral Ecology, 21(1), pp.153-160.
Murphy, S.M. and Lill, J.T., 2010. Winter predation of diapausing cocoons of slug caterpillars (Lepidoptera: Limacodidae). Environmental Entomology, 39(6), pp.1893–1902.
Murphy, S.M., Lill, J.T. and Epstein, M.E., 2011. Natural history of Limacodid moth (Zygaenoidea) in the Environs of Washington, D.C. The Journal of the Lepidopterists' Society, 65(3), pp.137-153.
Mutanen, M., Wahlberg, N. and Kaila, L., 2010. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings of the Royal Society B: Biological Sciences, 277(1695), pp.2839-2848.
Nazari, V., Zakharov, E. and Sperling, F.A.H., 2007. Phylogeny, historical biogeography, and taxonomic ranking of Parnassinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular phylogenetics and evolution, 42(1), pp.131-156.
Niehuis, O., Naumann, C.M. and Mishof, B., 2006. Phylogenetic analysis of Zygaenoidea small-subunit rRNA structural variation implies initial oligophagy on cyanogenic host plants in larvae of the moth genus Zygaena (Insecta: Lepidoptera). Zoological Journal of the Linnean Society, 147(3), pp.367-381.
Nieukerken, E.J., Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J., Mitter, C., Mutanen, M., Regier, J.C., Simonsen, T.J., Wahlberg, N., Yen, S.-H., Zahiri, R., Adamski, D., Baixeras, J., Bartsch, D., Bengtsson, B.Å., Brown, J.W., Bucheli, S.R., Davis, D.R., Prins, J.D., Prins, W.D., Epstein, M.E., Gentili-Poole, P., Gielis, C., Hättenschwiler, P., Hausmann, A., Holloway, J.D., Kallies, A., Karsholt, O., Kawahara, A.Y., Koster, S.J.C., Kozlov, M.V., Lafontaine, J.D., Lamas, G., Landry, J.-F., Lee, S., Nuss, M., Park, K.-T., Penz, C., Rota, J., Schintlmeister, A., Schmidt, B.C., Sohn, J.-C., Solis, M.A., Tarmann, G.M., Warren, A.D., Weller, S., Yakovlev, R.V., Zolotuhin, V.V. and Zwick, A., 2011. Order Lepidoptera Linnaeus, 1758. In: Z.-Q. Zhang, ed. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, pp.212–221.
Nordlander, G., Liu, Z. and Ronquist, F., 1996. Phylogeny and historical biogeography of the cynipoid wasp family Ibaliidae (Hymenoptera). Systematic Entomology, 21(2), pp.151-166.
Paclt, J., 2008. On the triple usage of the family name Apodidae in zoology (Aves; Crustacea; Insecta). Senckenbergiana biologica, 88(1), pp.49-52.
Peña, C., Nylin, S., Freitas, A.V. and Wahlberg, N., 2010. Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae). Zoologica Scripta, 39(3), pp.243-258.
Petrucco Toffolo, E., Zovi, D., Perin, C., Paolucci, P., Roques, A., Battisti, A. and Horvath, H., 2014. Size and dispersion of urticating setae in three species of processionary moths. Integrative zoology, 9(3), pp.320-327.
Pough, F.H., Taigen, T.L., Stewart, M.M. and Brussard, P.F., 1983. Behavioral modification of evaporative water loss by a Puerto Rican frog. Ecology, 64(2), pp.244-252.
Poulton, E.B., 1890. The colours of animals: their meaning and use, especially considered in the case of insects. New York: D. Appleton and Company.
Powell, J.A. and De Benedictis, J.A., 1995. Biological relationships: Host tree preferences and isolation by pheromones among allopatric and sympatric populations of western Choristoneura. University of California Publications in Entomology, 115, pp.21–68.
Powell, R., 2007. Is convergence more than an analogy? Homoplasy and its implications for macroevolutionary predictability. Biology & Philosophy, 22(4), pp.565-578.
Ratnasingham, S. and Hebert, P.D.N., 2007. BOLD: the barcode of life data system. Molecular Ecology Notes, 7, pp.355-364.
Reed, T.E., Grotan, V., Jenouvrier, S., Sather, B. and Visser, M.E., 2013. Population growth in a wild bird is buffered against phenological mismatch. Science, 340(6131), pp.488-491.
Reed, R.D. and Sperling, F.A.H., 1999. Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio. Molecular Biology and Evolution, 16(2), pp.286-297.
Reeve, H.K. and Sherman, P.W., 1993. Adaptation and the goals of evolutionary research. The Quarterly Review of Biology, 68(1), pp.1-32.
Regier, J.C., Mitter, C., Zwick, A., Bazinet, A.L., Cummings, M.P., Kawahara, A.Y., Sohn, J.-C., Zwickl, D.J., Cho, S., Davis, D.R., Baixeras, J., Brown, J., Parr, C., Weller, S., Lees, D.C. and Mitter, K.T., 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One, 8(3), p.e58568.
Regier, J.C., Zwick, A., Cummings, M.P., Kawahara, A.Y., Cho, S., Weller, S., Roe, A., Baixeras, J., Brown, J.W., Parr, C., Davis, D.R., Epstein, M.E., Hallwachs, W., Hausmann, A., Janzen, D.H., Kitching, I.J., Solis, M.A., Yen, S.-H., Bazinet, A.L. and Mitter, C., 2009. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology, 9(1), p.280.
Reimchen, T.E., 1983. Structural relationships between spines and lateral plates in threespine stickleback (Gasterosteus aculeatus). Evolution, 37(5), pp.931-946.
Remmel, T., Davison, J. and Tammaru, T., 2011. Quantifying predation on folivorous insect larvae: the perspective of life-history evolution. Biological Journal of the Linnean Society, 104(1), pp.1-18.
Remmel, T. and Tammaru, T., 2009. Size‐dependent predation risk in tree‐feeding insects with different colouration strategies: a field experiment. Journal of Animal Ecology, 78(5), pp.973-980.
Rettenmeyer, C.W., 1970. Insect mimicry. Annual review of entomology, 15(1), pp.43-74.
Robinson, M.H., 1969. The defensive behaviour of some orthopteroid insects from panama. Ecological Entomology, 121(7), pp.281-303.
Rohlf, F.J., 2006. tpsDig, Digitize Landmarks and Outlines. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.
Ronquist, F. and Huelsenbeck, J.P., 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), pp.1572-1574.
Ruxton, G.D., Sherratt, T.N. and Speed, M.P., 2004. Avoiding attack: the evolutionary ecology of crypsis, warning wignals and mimicry. Oxford: Oxford University Press.
Ruxton, G.D. and Sherratt, T.N., 2006. Aggregation, defence and warning signals: the evolutionary relationship. Proceedings of the Royal Society B: Biological Sciences, 273(1600), pp.2417-2424.
Ruxton, G.D., Allen, W.L., Sherratt, T.N. and Speed, M.P., 2019. Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford: Oxford University Press.
Sackton, T.B., Grayson, P., Cloutier, A., Hu, Z., Liu, J.S., Wheeler, N.E., Gardner, P.P., Clarke, J.A., Baker, A.J., Clamp, M. and Edwards, S.V., 2019. Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 364(6435), pp.74-78.
Sherratt, T.N., 2008. The evolution of Müllerian mimicry. Naturwissenschaften, 95(8), p.681.
Sih, A., 1992. Prey uncertainty and the balancing of antipredator and feeding needs. The American Naturalist, 139(5), pp.1052-1069.
Sillén‐Tullberg, B., 1988. Evolution of gregariousness in aposematic butterfly larvae: a phylogenetic analysis. Evolution, 42(2), pp.293–305.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the entomological Society of America, 87(6), pp.651-701.
Solovyev, A.V., 2010. A taxonomic review of the genus Phrixolepia (Lepidoptera, Limacodidae). Entomological Review, 89(6), pp.730-744.
Solovyev, A.V., 2010. New species of the genus Parasa (Lepidoptera, Limacodidae) in south-east Asia. Zoologicheskiĭ Zhurnal, 89(11), pp.1354-1360.
Solovyev, A.V., 2014. Parasa Moore auct.: phylogenetic review of the complex from the Palaearctic and Indomalayan regions (Lepidoptera, Limacodidae). Munich and Vilnius: Museum Witt and Nature Research Center.
Speed, M.P. and Ruxton, G.D., 2005. Warning displays in spiny animals: one (more) evolutionary route to aposematism. Evolution, 59(12), pp.2499-2508.
Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), pp.1312-1313.
Stamp, N.E. and Wilkens, R.T., 1993. On the cryptic side of life: being unapparent to enemies and the consequences for foraging and growth in caterpillars. In: N.E. Stamp and T.M. Casey eds. Caterpillars: ecological and evolutionary constraints on foraging. New York: Chapman and Hall. pp.283-330.
Staudinger, O., 1901. Catalog der Lepidopteren des palaearctischen Faunengebietes: Th. Famil. Papilionidae-Hepialidae, von O. Staudinger und H. Rebel. Vol. 1. Berlin: R. Friedländer & Sohn.
Stayton, C.T., 2008. Is convergence surprising? An examination of the frequency of convergence in simulated datasets. Journal of Theoretical Biology, 252(1), pp.1-14.
Stevens, M. and Ruxton, G.D., 2012. Linking the evolution and form of warning coloration in nature. Proceedings of the Royal Society B: Biological Sciences, 279(1728), pp.417-426.
Stewart, C.-B., 2007. Evolution: Convergent and Parallel Evolution. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd.
Sugiura, S. and Yamazaki, K., 2014. Caterpillar hair as a physical barrier against invertebrate predators. Behavioral Ecology, 25(4), pp.975-983.
Summers, K. and Clough, M.E., 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences, 98(11), pp.6227-6232.
Symula, R., Schulte, R. and Summers, K., 2001. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1484), pp.2415-2421.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), pp.2725-2729.
Tiffney, B.H., 1985. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum, 66(2), pp.243-273.
Tullberg, B.S. and Hunter, A.F., 1996. Evolution of larval gregariousness in relation to repellent defences and warning coloration in tree-feeding Macrolepidoptera: a phylogenetic analysis based on independent contrasts. Biological Journal of the Linnean Society, 57(3), pp.253-276.
Uller, T., Moczek, A.P., Watson, R.A., Brakefield, P.M. and Laland, K.N., 2018. Developmental bias and evolution: A regulatory network perspective. Genetics, 209(4), pp.949-966.
Vitt, L.J. and Caldwell, J.P., 2013. Herpetology: an introductory biology of amphibians and reptiles. 4th ed. San Diego: Academic Press.
Wahlberg, N. and Wheat, C.W., 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic biology, 57(2), pp.231-242.
Wake, D.B., 1991. Homoplasy: the result of natural selection or evidence of design limitations? The American Naturalist, 138(3), pp.543-567.
Wake, D.B., 1996. Introduction. In: M.J. Sanderson and L. Hufford, eds. Homoplasy: recurrence of similarity in evolution. San Diego: Academic Press. pp.xvii-xxv.
Wake, D.B., Wake, M.H. and Specht, C.D., 2011. Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science, 331(6020), pp.1032-1035.
Wallace, A.R., 1889. A narrative of travels on the Amazon and Rio Negro: with an account of the native tribes, and observations on the climate, geology, and natural history of the Amazon Valley. Ward Lock.
Walker, A., 2018. Exploring the world of insect venoms. Entomological Society of Queensland, 46(2), pp.24-29.
Wen, J., 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics, 30(1), pp.421-455.
Whitwell, S.M., Amiot, C., Mclean, I.G., Lovegrove, T.G., Armstrong, D.P., Brunton, D.H. and Ji, W., 2012. Losing anti‐predatory behaviour: A cost of translocation. Austral Ecology, 37(4), pp.413-418.
Yachi, S. and Higashi, M., 1998. The evolution of warning signals. Nature, 394(6696), pp.882-884.
Ydenberg, R.C. and Dill, L.M., 1986. The economics of fleeing from predators. In: J. Rosenblatt et al., eds. Advances in the Study of Behavior Vol. 16. San Diego: Academic Press. pp.229-249.
Zaspel, J.M., Weller, S.J. and Epstein, M.E., 2016. Origin of the hungry caterpillar: evolution of fasting in slug moths (Insecta: Lepidoptera: Limacodidae). Molecular phylogenetics and evolution, 94, pp.827-832.