簡易檢索 / 詳目顯示

研究生: 劉信廷
論文名稱: 多接收器感應耦合電漿質譜儀(MC-ICPMS)之鉬同位素分析技術及貝加爾湖岩芯中鉬同位素之研究
Analytical techniques for molybdenum isotopes by using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and its application to a sediment core from Lake Baikal
指導教授: 余英芬
Yu, Ein-Fen
李德春
Lee, Der-Chuen
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 47
中文關鍵詞: 雙示蹤劑解析法貝加爾湖岩芯上次冰期與間冰期湖泊的鉬同位素值變動
英文關鍵詞: Double spike method, Lake Baikal, The changes in molybdenum isotope compositions over the glacial to interglacial
論文種類: 學術論文
相關次數: 點閱:135下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉬元素的研究主要集中於海洋環境上,而湖泊中鉬元素的研究則相當缺乏,因此本研究使用貝加爾湖岩芯標本來進行探討。本論文係用序列萃取方式萃取沉積物中鐵錳氧化物所吸收之微量元素,並透過本研究工作所建立之層析方法純化並分離鉬元素。最後利用雙示蹤劑(由97Mo與94Mo配成)解析法(Double spike method)於多接收器感應耦合電漿質譜儀(MC-ICPMS)進行鉬同位素分析。
    在貝加爾湖中,鉬同位素的變動是受控於何種機制影響,是本篇研究欲應用及探討之目標。由於利用鐵錳相萃取的方式可推算出水體可能代表的同位素訊號值,故貝加爾湖岩芯沉積物經鐵錳相萃取後,再經層析純化及雙示蹤劑同位素分析技術量測得到的鉬同位素值,即為貝加爾湖湖水水體鉬同位素值之回推。此淡水湖泊水體的鉬同位素值回推為98/95MoNIST3134= 1.02‰。此外,貝加爾湖岩芯的記錄顯示,以岩芯深度100公分(即年代12ka)為界,可反映該湖水體於上次冰期及間冰期以來前後兩不同階段的氣候變動趨勢。由多種證據推論,貝加爾湖湖水鉬同位素值的變動應是受冰期與間冰期氣候變遷下其是否受冰川覆蓋的影響導致不同程度的氧化結果所致為較可能的機制。

    The studies of molybdenum (Mo) are mainly focusing on marine environment, and the application on lake record is rare. A three-meters long gravity core (GC-99; 52°05’23”N, 105°50’24”E; water depth 201m) from Lake Baikal is studied for Mo isotopes. This study is using Mo concentration and its isotope fractionation to examine the sources of material and the changes in conditions of Lake Baikal with climate changes.
    To approach on extracting Mo isotope signal directly related to lake water, a sequential leaching technique to extract the Mo isotopes coating on the Fe-Mn oxides is established, and a robust chromatography technique to purify molybdenum isotopes is modified from previous study. Then, Mo isotope composition is measured by applying double spike method with Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). According to the Mo concentration and its isotope composition, the results imply Lake Baikal stayed oxic condition over the last 24 ka. Moreover, the sediment core GC-99 from Lake Baikal imply two stages fluctuations of the lake environment separated at core depth of 100cm (around 12ka); and the shifting of 98/95Mo isotope composition shows that the lake during interglacial period was more oxic than the last glacial period due to absence of ice cover.

    致謝 I 中文摘要 II Abstract III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景 1 1.1.1 鉬元素與鉬同位素之地球化學 1 1.1.2 多接收器感應耦合電漿質譜儀之鉬同位素分析技術 2 1.2 研究動機與目的 3 第二章 研究材料與方法 8 2.1 貝加爾湖岩芯標本 8 2.2 標本前處理 8 2.3 鉬元素之層析分離 9 2.4 鉬同位素分析 9 2.4.1 標準品測定 10 2.4.2 標本測定 11 第三章 多接收器感應耦合電漿質譜儀之鉬含量及鉬同位素分析結果與討論 17 3.1 不等量萃取液之鉬同位素值分析測試 17 3.2 鉬元素的層析方法 17 3.3 標本與雙示蹤劑混合比例的分析測試 17 3.4 鐵含量對鉬同位素值分析測量的評估 18 3.5 不同標準品間鉬同位素值之對照 19 3.6 標本測值之準確度評估 19 3.7 質譜儀穩定度之監測 20 第四章 貝加爾湖岩芯紀錄結果與討論 29 4.1 岩芯年代架構 29 4.2 貝加爾湖沉積岩芯的鉬含量與同位素之記錄 29 第五章 結論 41 參考文獻 42 附錄 46

    壹、中文文獻
    陳志華 (2010) 南海沉積物自生鐵錳氧化物中稀土元素及釹、鉿同位素成分:重建南海過去三千萬年以來深水循環之演化史。國立成功大學地球科學研究所碩士論文。
    賴諭萱 (2006) 利用MC-ICPMS及TI-MS精確測量海水中鈣元素之同位素比值。國立成功大學地球科學研究所碩士論文。

    貳、英文文獻
    Wetherill, G.W. 1964. Isotopic composition and concentration of molybdenum in iron meteorites. J Geophys Res, 69: 4403-4408.
    Anbar, A.D., 2004. Molybdenum stable isotopes: Observations, interpretations and directions. In: C.M. Johnson, B.L. Beard and F. Albarede (Editors), Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy & Geochemistry, pp. 429-454.
    Anbar, A.D., Knab, K.A. and Barling, J., 2001. Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. Analytical Chemistry, 73(7): 1425-1431.
    Barling, J. and Anbar, A.D., 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217(3-4): 315-329.
    Barling, J., Arnold, G.L. and Anbar, A.D., 2001. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth and Planetary Science Letters, 193(3-4): 447-457.
    Bayon, G., German, C.R., Burton, K.W., Nesbitt, R.W. and Rogers, N., 2004. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth and Planetary Science Letters, 224(3-4): 477-492.
    Bezrukova, E., Bukharov, A., Bychinskii, V., Vilyams, D., Gvozdkov, A., Geletii, V., Gorgelyad, A., Gorokhov, I., Ivanov, E., Kavai, T., Kalmychkov, G., Karabanov, E., Kerber, E., Kolman, S., Kochukov, V., Kravchinskii, V., Krainov, M., Krapivina, S., Kudryashov, N., Kuzmin, M., Kulagina, N., Letunova, P., Pevzner, L., Prokopenko, A., Solotchin, P., Tkachenko, L., Fedenya, S., Khakhaev, B., Khomutova, M., Khursevich, G., Sholts, K. and Members, B.D.P., 2004. High-resolution sedimentary record in a new BDP-99 core from Posol'sk Bank in Lake Baikal. Geologiya I Geofizika, 45(2): 163-193.
    Boes, X., Piotrowska, N. and Fagel, N., 2005. High-resolution diatom/clay record in Lake Baikal from grey scale, and magnetic susceptibility over Holocene and Termination I. Global and Planetary Change, 46(1-4): 299-313.
    Collier, R.W., 1985. Molybdenum in the northeast Pacific-Ocean. Limnology and Oceanography, 30(6): 1351-1354.
    Crusius, J., Calvert, S., Pedersen, T. and Sage, D., 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145(1-4): 65-78.
    Demske, D., Heumann, G., Granoszewski, W., Nita, M., Mamakowa, K., Tarasov, P. E. and Oberhänsli, H., 2005. Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Global and Planetary Change, 46(1-4): 255-279.
    Dodson, M.H., 1963. A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: Part I - General first-order algebraic solutions. Journal of Sceintific Instruments, 40: 289-295
    Emerson, S.R. and Huested, S.S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3-4): 177-196.
    Frauston da Silva, J.J.R. and Williams, R.J.P.,2001. The bioligical chemistry of the elements: the inorganic chemistry of life. Clarendon press.
    Galer, S.J.G., 1999. Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology, 157(3-4): 255-274.
    Greber, N.D., Siebert, C., Nagler, T.F. and Pettke, T., 2012. 98/95Mo values and Molybdenum Concentration Data for NIST SRM 610, 612 and 3134: Towards a Common Protocol for Reporting Mo Data. Geostandards and Geoanalytical Research, 36(3): 291-300.
    Helz, G.R., Miller, C.V., Charnock, J.M., Mosslemans, J.F.W., Pattrick, R.A.D., Garner, C.D., and Vaughan, D.J., 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60: 3631–3642,.
    Libes, S., 2009. Introduction to marine biogeochemistry. Academic Press.
    Malinovsky, D., Hammarlund, D., Ilyashuk, B., Martinsson, O. and Gelting, J., 2007. Variations in the isotopic composition of molybdenum in freshwater lake systems. Chemical Geology, 236(3-4): 181-198.
    Martin, P., Granina, L., Martens, K. and Goddeeris, B., 1998. Oxygen concentration profiles in sediments of two ancient lakes: Lake Baikal (Siberia, Russia) and Lake Malawi (East Africa). Hydrobiologia, 367: 163-174.
    McManus, J., Nagler, T.F., Siebert, C., Wheat, C.G. and Hammond, D.E., 2002. Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge-flank alteration. Geochemistry Geophysics Geosystems, 3.
    Minoura, K., 2000. Lake Baikal: a mirror in time and space for understanding global change processes. Elsevire press.
    Morford, J.L. and Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750.
    Morley, D.W., Leng, M.J., Mackay, A. W., Sloane, H.J., 2005. Late glacial and Holocene environmental change in theLake Baikal region documented by oxygen isotopesfrom diatom silica. Globa and Planetary Change, 46: 221-233.
    Nakagawa, Y., Firdaus, M.L., Norisuye, K., Sohrin, Y., Irisawa, K. and Hirata, T., 2008. Precise isotopic analysis of Mo in seawater using multiple collector-inductively coupled mass spectrometry coupled with a chelating resin column preconcentration method. Analytical Chemistry, 80(23): 9213-9219.
    Nakagawa, Y., Takano, S., Firdaus, M.L., Norisuye, K., Hirata, T., Vance, D. and Sohrin, Y., 2012. The molybdenum isotopic composition of the modern ocean. Geochemical Journal, 46(2): 131-141.
    Neubert, N., Heri, A.R., Voegelin, A.R., Nägler, T.F., Schlunegger, F. and Villa, I.M., 2011. The molybdenum isotopic composition in river water: Constraints from small catchments. Earth and Planetary Science Letters, 304(1-2): 180-190.
    Neubert, N., Nägler, T.F. and Böttcher, M.E., 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36(10): 775.
    Pearce, C.R., Burton, K.W., von Strandmann, P.A.E.P., James, R.H. and Gíslason, S.R., 2010. Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth and Planetary Science Letters, 295(1-2): 104-114.
    Pietruszka, A.J., Walker, R.J. and Candela, P.A., 2006. Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS: An evaluation of matrix effects. Chemical Geology, 225(1-2): 121-136.
    Piotrowska, N., Bluszcz, A., Demske, D., Granoszewski, W. and Heumann, G., 2004. Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments. Radiocarbon, 46(1): 181-187.
    Poulson Brucker, R.L., McManus, J., Severmann, S. and Berelson, W.M., 2009. Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochemistry Geophysics Geosystems, 10(6).
    Poulson, R.L., Siebert, C., McManus, J. and Berelson, W.M., 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34(8): 617.
    Prokopenko, A.A., Khursevich, G.K., Bezrukova, E.V., Kuzmin, M.I., Boes, X., Williams, D.F., Fedenya, S.A., Kulagina, N.V., Letunova, P.P. and Abzaeva, A.A., 2007. Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed. Quaternary Research, 68(1): 2-17.
    Shichi, K., Kawamuro, K., Takahara, H., Hase, Y., Maki, T. and Miyoshi, N., 2007. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeography Palaeoclimatology Palaeoecology, 248(3-4): 357-375.
    Siebert, C., Nagler, T.F. and Kramers, J.D., 2001. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochemistry Geophysics Geosystems, 2: art. no.-2000GC000124.
    Siebert, C., Nägler, T.F., von Blanckenburg, F. and Kramers, J.D., 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211(1-2): 159-171.
    Siebert, C., McManus, J., Bice, A., Poulson, R. and Berelson, W.M., 2006. Molybdenum isotope signatures in continental margin marine sediments. Earth and Planetary Science Letters, 241(3-4): 723-733.
    Tossell, J.A., 2005. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochimica et Cosmochimica Acta, 69(12): 2981-2993.
    Wen, H.J., Carignan, J., Cloquet, C., Zhu, X.K. and Zhang, Y.X., 2010. Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS: Proposition for delta zero and secondary references. Journal of Analytical Atomic Spectrometry, 25(5): 716-721.
    Zheng, Y., Anderson, R.F., van Geen, A. and Kuwabara, J., 2000. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165-4178.

    下載圖示
    QR CODE