簡易檢索 / 詳目顯示

研究生: 張益豪
I-Hao Chang
論文名稱: xSr(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Ta2/3)O3微波介電材料的光譜研究
Spectroscopic Study of xSr(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Ta2/3)O3 Microwave Materials
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: X光繞射延伸X光吸收精細結構拉曼散射紅外反射光譜相變
英文關鍵詞: X-ray diffraction, extend X-ray absorption fine structure, Raman scattering, infrared reflection spectrum, phase transition
論文種類: 學術論文
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

我們研究摻入不同Sr濃度的Ba(Mg1/3Ta2/3)O3 (xSr(Mg1/3Ta2/3)O3- (1-x)Ba(Mg1/3Ta2/3)O3,縮寫為xSMT-(1-x)BMT,x = 0.0~1.0) 的光譜特性,包含X光繞射(XRD)、延伸X光吸收精細結構(EXAFS)、拉曼散射及紅外反射光譜,並從光譜特性中找出與微波介電特性之關聯。在X光繞射實驗中,我們發現在x = 0.25之後(範圍在2θ = 42°~44.5°)會出現單斜結構 (-2 6 0) 的繞射峰,因此從X光繞射並不容易觀察出xSMT-(1-x)BMT的相變行為。在延伸X光吸收光譜中,不論是在以Ta為中心還是以Sr為中心的χ(R)光譜中,皆可看出光譜大致上有三階段的變化,證實xSMT-(1-x)BMT的晶格結構隨Sr摻入濃度x的增加產生改變。拉曼散射從單斜結構所主導之拉曼散射峰的出現,預測在x = 0.625時可能已經產生相變。紅外反射光譜的波形不容易看出相變,但從聲子的頻移分析可以得到相變發生的事實。
我們發現B位置 (Mg和Ta) 的有序程度與微波品質因子有很高的關聯性,而兩個A1g(O)聲子的寬度亦與微波品質因子有密切關係。相變之後(x ≥ 0.65),BO6才是決定微波介電常數趨勢的重要因素,因此我們推論x ≤ 0.5時A位置對微波介電常數的影響是顯著的。異常紅外聲子和微波介電特性是有關聯的,但是需要更多來自第一原理的資訊才能有清晰的解釋。

X-ray diffraction (XRD), extend x-ray absorption fine structure (EXAFS), Raman scattering, and infrared reflection spectroscopy were adopted to analyze the correlation of microwave properties with the microstructural parameters of xSr(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Ta2/3)O3 perovskite ceramics (xSMT-(1-x)BMT) with x = 0.0 to 1.0. We found the XRD peak (-2 6 0) of monoclinic phase near 2θ = 42°~44.5° appeared when x = 0.25, so the phase transition does occure, but it does not clearly find when it happens by XRD pattern. By EXAFS results, we found a three-stage variation in the χ(R) spectra for the Ta core or the Sr core, and this confirms the minor change of crystal symmetry through the slight displacement of atomic rearrangement as x increases. In Raman scattering experiments, the dominant scattering peaks of monoclinic phase appeared when x ≥ 0.625, and we think it transfers from trigonal symmetry to monoclinic phase for x ≥ 0.625. The shape of peak is not easy to recognize the phase transformation in infrared reflection spectrum, but we can find the at x ≥ 0.625 phase transformation from analyzing shift of phonon peaks.
The strong correlation of ordering parameter of B site (Mg and Ta) is obtained by XRD and microwave quality factor such correlation also exists between widths of two Raman A1g(O) phonons and microwave quality factor. After the phase transformation (x ≥ 0.65), the BO6 oxygen octahedra dominate the trend of microwave dielectric constant, so we predict that A site effect on the microwave dielectric properties is remarkable when x ≤ 0.5. The anomaly of the infrared active phonon modes may be connected with microwave dielectric properties, but we need more information from first-principles calculations to get the precise picture of the phase transition by the IR measurements.

致謝 I 中文摘要 V Abstract VI 總目錄 VII 圖目錄 IX 表目錄 XI Chapter 1 緒論 1 1.1 陶瓷材料簡介 1 1.2 樣品來源介紹 2 1.3 研究動機與目的 3 1.4 參考資料 4 Chapter 2 實驗設置及原理 6 2.1 X光繞射簡介 6 2.2 X光吸收光譜簡介 6 2.3 拉曼散射簡介 11 2.4 紅外反射光譜簡介 13 2.5 參考資料 14 Chapter 3 X光繞射圖譜分析 16 3.1 樣品的晶體結構 16 3.1.1 鈣鈦礦 (perovskite) 結構 16 3.1.2 B位置1:2的鈣鈦礦結構 (Pm3m與P3-m1) 17 3.1.3 近似xSMT-(1-x)BMT組成的結構比較 18 3.2 X光繞射圖譜數據處理 22 3.2.1 多峰比較的晶格常數計算法 23 3.2.2 結構精算法 23 3.3 X光繞射圖譜研究 24 3.3.1 晶格常數分析結果 24 3.3.2 有序程度的分析 26 3.3.3 繞射峰的分裂 27 3.3.4 有序性與微波品質因子的關聯 30 3.4 結論 31 3.5 參考資料 31 Chapter 4 X光吸收光譜分析 34 4.1 X光吸收光譜數據處理 34 4.1.1 建立理論模型 35 4.1.2 實驗數據轉換 35 4.1.3 光譜擬合 36 4.2 延伸X光吸收精細結構光譜研究 36 4.2.1 EXAFS理論模型 36 4.2.2 以鉭原子為吸收中心的分析 39 4.2.3 以鍶原子為吸收中心的徑向光譜定性分析 41 4.2.4 X光吸收光譜與微波介電特性之關聯 42 4.3 結論 42 4.4 參考資料 43 Chapter 5 拉曼散射光譜分析 44 5.1 複合性鈣鈦礦結構xSMT-(1-x)BMT的群論分析 44 5.2 拉曼散射光譜數據處理 46 5.3 拉曼散射光譜研究 46 5.3.1 BMT拉曼聲子與第一原理的對照 46 5.3.2 分區段拉曼光譜分析 48 5.3.3 拉曼散射光譜與微波介電特性之關聯 55 5.4 結論 57 5.5 參考資料 57 Chapter 6 紅外反射光譜分析 59 6.1 紅外反射光譜數據處理方法 59 6.1.1 克拉馬-克隆尼(Kramers-Kronig)轉換的積分近似方法 59 6.1.2 紅外反射光譜擬合 60 6.2 紅外反射光譜研究 60 6.2.1 BMT紅外聲子與第一原理的對照 60 6.2.2 紅外反射光譜分析 63 6.2.3 紅外反射光譜與微波介電特性之關聯 70 6.3 結論 71 6.4 參考資料 71 Chapter 7 全文總結 73 Appendix 74

[1] R. D. Richtmyer, “Dielectric Resonators”, J. Appl. Phys., 10, 391-398 (1939).
[2] A. J. Moulson and J. M. Herbert, Electroceramics, Chapman and Hall, New York, (1990).
[3] H. Ouchi, S. K., “Dielectric Ceramics for Microwave Application”, J. Am. Ceram. Soc., 24, 60-64 (1985).
[4] 陳冠宇,碩士論文BMT陶瓷成分及添加劑對微波介電特性之研究,第3章,民國92年6月。
[5] F.Galasso and J. Pyle, “Preparation and Study of Ordering in A(B’0.33Nb0.67)O3 Perovskite-Type Compounds”, J. Phys. Chem., 67, 1561-1562 (1963).
[6] F. Galasso and J. Pyle, “Ordering in Compounds of the A(B’0.33Ta0.67)O3 Type”, Inorg. Chem., 2, 482-484 (1963).
[7] M. Onoda, J. Kuwata, K. Kaneta, K. Toyama and S. Nomura, “Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 Solid Solution Ceramics with Temperature-Stable High Dielectric Constant and Low Microwave Loss”, Jpn. J. Appl. Phys., 21, 1707-1710 (1982).
[8] T. Nagai, T. Inuauka and M. Sugiyama, “Contribution of Dielectric Constant to Change in Temperature Coefficient of Resonant Frequency in (Ba1-xSrx)(Mg1/3Ta2/3)O3 Compounds”, Jpn. J. Appl. Phys., 31, 3132-3135 (1992).
[9] M. Sugiyama and T. Nagai, “Anomaly of Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 Solid Solution and Its Relation to Structure Change”, Jpn. J. Appl. Phys., 32, 4360-4363 (1993).
[10] T. Nagai, and M. Sugiyama, “Contributions of phase stability to dielectric constant of solid solutions (Ba1–xSrx)(Mg1/3Ta2/3)O3”, Advanced Materials 93, 1/B. Trans. Mater. Res. Soc. Jpn., Vol. 14B, 1735–1738 (1994).
[11] T. Nagai, M. Sugiyama, M. Sando and K. Niihara, “Anomaly in the Infrared Active Phonon Modes and Its Relationship to the Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 Compound”, Jpn. J. Appl. Phys., 35, 5163-5167 (1996).
[12] T. Nagai, M. Sugiyama, M. Sando and K. Niihara, “Structural Change in Ba(Sr1/3Ta2/3)O3-Type Perovskite Compounds upon Tilting of Oxygen Octahedra”, Jpn. J. Appl. Phys., 36, 1146-1153 (1997).
[13] D. C. Koningsberger, and R. Prins, X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES, A Wiley-Interscience Publication (1988).
[14] Harry J. Lipkin, “Phase uncertainty and loss of interference in a simple model for mesoscopic Aharonov-Bohm experiments”, Phys. Rev. A, 1990, 42, 49–54 (1990).
[15] Stern, Edward A., “Theory of the Extended X-ray-Absorption Fine Structure”, Phys. Rev. B, 10, 3027-3037 (1974).
[16] M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, “Analysis of multiple-scattering XAFS data using theoretical standards”, Physica B,Vol. 208-209, 154-156 (1995).
[17] B. Ravel, “A practical introduction to multiple scattering theory”, J. Alloys Compd., 401, 118-126 (2005).
[18] G. Lucazeau, L. Avello, “Raman spectroscopy in solid state physics and materical sciene. Theory. Techniques and applications”, Analusis, 23, 301-311 (1995).
[19] B. Rowda, M. Avdeev, P. L. Lee, P. F. Henry and C. D. Ling, “Structures of 6H perovskites Ba3CaSb2O9 and Ba3SrSb2O9 determined by synchrotron X-ray diffraction, neutron powder diffraction and ab initio calculations”, Acta Cryst., B64, 154-159 (2008).
[20] Dias Anderson, M. Matinaga Franklin, and L. Moreira Roberto, “Raman Spectroscopy of (Ba1-xSrx)(Mg1/3Nb2/3)O3 Solid Solutions from Microwave-Hydrothermal Powders”, Chem. Mater., 19 (9), 2335-2341 (2007).
[21] T. Sakamoto, Y. Doi, Y. Hinatsu, “Crystal structures and magnetic properties of 6H-perovskite-type oxides Ba3MIr2O9 (M = Mg, Ca, Sc, Ti, Zn, Sr, Zr, Cd and In)”, J. Solid State Chem., 35, 156-166 (1980).
[22] V. Ting, Y. Liu, L. Nore´n, R.L. Withers, D.J. Goossens, M. James, C. Ferraris, “A structure, conductivity and dielectric properties investigation of A3CoNb2O9 (A = Ca2+, Sr2+, Ba2+) triple perovskites”, J. Solid State Chem., 177, 4428–4442 (2004).
[23] Yoshihiro Doi, Yukio Hinatsu and Kenji Ohoyama, “Structural and magnetic properties of pseudo-two-dimensional triangular antiferromagnets Ba3MSb2O9 (M = Mn, Co and Ni)”, J. Phys.: Condens. Matter, 16, 8923-8935 (2004).
[24] Job T. Rijssenbeek, Sylvie Malo, Vincent Caignaert, and Kenneth R. Poeppelmeier, “Site and oxidation-state specificity yielding dimensional control in perovskite ruthenates”, J. Am. Chem. Soc., 124 (10), 2090–2091 (2002).
[25] Z. Serpil Gönen, J. Gopalakrishnan, B. W. Eichhorn, and Richard L. Greene, “Structurally Modulated Magnetic Properties in the A3MnRu2O9 Phases (A =Ba, Ca): The Role of Metal-Metal Bonding in Perovskite-Related Oxides”, Inorg. Chem., 40 (19), 4996–5000 (2001).
[26] J. T. Rijssenbeek, Q. Huang, R. W. Erwin, H. W. Zandbergen, R. J. Cava, “The crystal structure of Ba3CuRu2O9 and comparison to Ba3MRu2O9 (M = In, Co, Ni, and Fe)”, J. Solid State Chem., 146, 1, 65-72 (1999).
[27] P. Lightfoot and P. D. Battle “The crystal and magnetic structures of Ba3NiRu2O9, Ba3CoRu2O9 and Ba3ZnRu2O9”, J. Solid State Chem., Vol. 89, Issue 1, 174-183 (1990).
[28] H. W. Zandbergen and D. J. W. IJdo, “Tribarium strontium diruthenate(V), Ba3SrRu2O9, a Rietveld refinement of neutron powder diffraction data”, Acta Cryst., C40, 919-922 (1984).
[29] I. M. Reaney, E. L. Colla, N. Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor”, Jpn. J. Appl. Phys., Part 1, Vol. 33, No. 7A, 3984-3990 (1994).
[30] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides”, Acta Cryst., A32, 751-767 (1976).
[31] S. Janaswamy, G. S. Murthy, E. D. Dias, V. R. K. Murthy, “Structural analysis of Ba Mg1/3(Ta, Nb)2/3O3 ceramics”, Mater. Lett., 55, 414-419 (2002).
[32] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures”, J. Appl. Cryst., 2, 65-71 (1969).
[33] A. C. Larson, and R. B. Von Dreele, GSAS-General Structure Analysis System., Los Alamos National Laboratory, Los Alamos, New Mexico., LAUR 86-748 (1994).
[34] Ruyan Guo, A. S. Bhalla, and L. E. Cross, “Ba(Mg1/3Ta2/3)O3 single crystal fiber grown by the laser heated pedestal growth technique” J. Appl. Phys., 75, 4704-4708 (1994)
[35] K. P. Surendran, M. T. Sebastian, “The effect of dopants in the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics”, J. Appl. Phys., 98, 094114 (2005).
[36] R. L. Moreira, F. M. Matinaga, A. Dias, “Raman-spectroscopic evaluation of the long-range order in Ba(B’1/3B”2/3)O3 ceramics”, Appl. Phys. Let., 78, No.4, 428-430 (2001).
[37] Mei Yu Chen, P.J. Chang, C.T. Chia, Y.C. Lee, I.N. Lin, L.-J. Lin, J.F. Lee, H.Y. Lee and T. Shimada, “Extended X-ray absorption fine structure, X-ray diffraction an Raman analysis of nickel-doped Ba(Mg1/3Ta2/3)O3”, J. Eur. Ceram. Soc., Vol. 27, Issues 8-9, 2995-2999 (2007).
[38] P.-J. Chang, C.-T. Chia, I.-N. Lin, J.-F. Lee, C. M. Lin, K. T. Wu, “Characterizing xBa(Mg1/3Ta2/3)O3+(1–x)Ba(Mg1/3Nb2/3)O3 microwave ceramics using extended x-ray absorption fine structure method”, Appl. Phys. Lett., 88, 242907 (2006).
[39] Tamura, D. A. Sagala and K. Wakino, “Lattice Vibrations of Ba(Zn1/3Ta2/3)O3 Crystal with Ordered Perovskite Structure”, Jpn. J. Appl. Phys., 25, 6, 787-791 (1986).
[40] Dai Yadong, Zhao Guanghui, Guo Liling, Liu Hanxing, “First-principles study of the difference in permittivity between Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3”, Solid State Commun., 149, 791-794 (2009).
[41] Chih-Ta Chia, Yi-Chun Chen, Hsiu-Fung Cheng,and I-Nan Lin, “Correlation of Microwave Dielectric Properties and Normal Vibration Modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”, J. Appl. Phys.,Vol. 94, No. 5, 3360-3364 (2003).
[42] Chih-Ta Chia, Pi-Jung Chang, Mei-Yu Chen, I.-Nan Lin, Hiroyuki Ikawa, L.-J. Lin,”Oxygen-octahedral phonon properties of xBaTiO3-(1-x)Ba(Mg1/3Ta2/3)O3 and xCa(Sc1/2Nb1/2)O3-(1-x)Ba(Sc1/2Nb1/2)O3 microwave ceramics”, J. Appl. Phys., 101, 084115 (2007).
[43] Kiyoshi Yamamoto and Akio Masui, “Complex Refractive Index Determination of Bulk Materials from Infrared Reflection Spectra”, Appl. Spectrosc., Vol. 49, Issue 5, 639-644 (1995).
[44] Minghan Chen and D. B. Tanner, “Infrared study of the phonon modes in bismuth pyrochlores”, Phys. Rev. B, 72, 054303 (2005).
[45] 羅光耀,固態光學實習-反射光譜量測原理及實驗,http://promotion.ep.nctu.edu.tw/teaches/92/ncyu/ncyu2.doc .

下載圖示
QR CODE