簡易檢索 / 詳目顯示

研究生: 劉耀中
Yao-Chung Liu
論文名稱: 二氧化矽螢光奈米管製備與其在基因傳輸上的應用
Preparation of Fluorescent Silica Nanotubes and their Application in Gene Delivery
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
中文關鍵詞: 二氧化矽螢光奈米管基因傳輸
英文關鍵詞: Fluorescent Silica Nanotube, Gene delivery
論文種類: 學術論文
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化矽奈米管具有特殊中空結構和表面容易修飾等優點,由模版方法可以大量合成材料且有效控制材料的大小。我們利用多孔性模版-陽極氧化鋁(AAO),和二氧化矽(SiO2)的溶膠-凝膠溶液來合成二氧化矽奈米管,再進一步將奈米管和水溶性CdSe(ZnS)奈米粒子結合,形成二氧化矽螢光奈米管。二氧化矽螢光奈米管,可方便我們觀察材料是否進入細胞,以及進入細胞後其所在的位置。將綠色螢光蛋白(GFP)的DNA經由二氧化矽奈米管帶進細胞內,藉由細胞螢光蛋白的表現來證明二氧化矽奈米管在基因傳輸上的應用。

    The silica nanotubes have a number of advantages that make them potential candidate for biological applications. Firstly, nanotubes have inner voids that can be filled with species ranging in size from large proteins to small molecules. Secondly, nanotubes have distinct inner and outer surfaces that can be functionalized easily. By using template method, a large number of nanotubes were synthesized and their sizes were controlled preciously. Silica nanotubes were synthesized through a sol-gel reaction using the anodic aluminum oxide membrane (AAO) as a template. The fluorescent silica nanotubes were prepared by dopping water-soluble nanocrystal CdSe(ZnS). The fluorescent silica nanotubes were used to monitor the localization of nanotubes in living cells and found to be localized in the cytoplasm. The fluorescent silica nanotubes carrying the GFP gene were employed to investigate the potential application of the nanotubes in gene delivery. The expression of GFP demonstrates a new biological application of nanotubes as a biomolecule carrier.

    目錄 總目錄…………………………………………………………………Ⅰ 中文摘要………………………………………………………………Ⅲ 英文摘要………………………………………………………………Ⅳ 第一章 緒論……………………………………………………………1 1-1 引言………………………………………………………………1 1-2 奈米材料之簡介…………………………………………………2 1-3奈米材料之合成方法……………………………………………5 1-4 基因傳輸系統(gene delivery system)……………………10 第二章 實驗……………………………………………………………15 2-1 研究動機與目的………………………………………………15 2-2 製備二氧化矽螢光奈米管……………………………………17 2-2-1 藥品與儀器………………………………………………17 2-2-2 實驗步驟…………………………………………………18 2-3 二氧化矽螢光奈米管作為DNA載體…………………………20 2-3-1 藥品與儀器………………………………………………20 2-3-2 實驗步驟…………………………………………………21 第三章 結果與討論……………………………………………………23 3-1 二氧化矽螢光奈米管製備之探討……………………………23 3-1-1 溶膠-凝膠黏度和二氧化矽結構關係……………………23 3-1-2二氧化矽螢光奈米管製備…………………………………28 3-1-3 控制二氧化矽奈米管長短………………………………33 3-2 二氧化矽螢光奈米管作為DNA載體之探討…………………35 3-2-1 二氧化矽奈米管和DNA結合……………………………35 3-2-2 二氧化矽奈米管當作基因載體…………………………38 3-2-3 二氧化矽奈米管毒性測性(MTT TEST)…………………42 第四章 結論……………………………………………………………45 未來展望………………………………………………………………46 參考文獻………………………………………………………………47

    1. (a) Martin, C. R.; Kohli, P. Nat. Rev. Drug Discovery 2003, 2, 29.(b) Alivisatos, A. P. Nat. Biotechnol. 2004, 22, 47.(c) Niemeyer, C. M. Angew. Chem. Int. Ed. Engl. 2001, 40, 4128.
    2. (a) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.(b) Chan, W. C.; Nie, S. Science 1998, 281, 2016.(c) Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508.
    3. (a) Cui, Y.; Wei, Q. Q.; Park, H. K. ; Lieber, C. M. Science 2001, 293, 1289.(b) Taton, T. A.; Lu, G.; Mirkin, C. A. J. Am. Chem. Soc. 2001, 123, 5164.(c) Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y. M.; Dai, H. J. Nano Lett. 2002, 2, 285.
    4. (a) Thomas, M.; Klibanov, A. M. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9138.(b) Yamada, T.; Iwasaki, Y.; Tada, H.; Iwabuki, H.; Chuah, M. KL; VandenDriessche, T.; Fukuda, H.; Kondo, A.; Ueda, M.; Seno, M.; Tanizawa, K.; Kuroda, S. Nature Biotechnol. 2003, 21, 885.(c) Salem, A. K.; Searson, P. C.; Leong, K. W. Nature Mater. 2003, 2, 668.(d) Pantarotto, D.; Briand, J. P.; Prato, M.; Bianco, A. Chem. Commun. 2004, 1, 16.
    5.Iijima, S. Nature 1991, 354, 56.
    6. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. SCIENCE 2002, 297, 787.
    7. Hertel, T.; Moos, G. Phys. Rev. Lett. 1999, 84, 5002.
    8. Brus, L. E. J. Phys. Chem. 1994, 98, 3575.
    9. Brus, L. E. J. Chem. Phys. 1984, 80, 4403.
    10. (a) Rupp, J.; Birringer, R. Phys. Rev. 1987, B36, 7888. (b) Hellstren,E.; Fecht, H.; Fu, Z.; Johnson, W. L. J. Appl. Phys. 1989, 65, 305.
    11. Wang, Z. H.; Choi, C. J.; Kim, B. K.; Kim, J. C.; Zhang, Z. D. J. AlloyCompd. 2003, 351, 319.
    12. Gleiter, H. Prog. Mater. Sci. 1989, 32, 223.
    13. (a) Alivisatos, A. P. Science 1996, 271, 933. (b) Chen, C. C.; Herhold,A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398.
    14. Glinka, Y. D.; Lin, S. H.; Hwang, L. P.; Chen, Y. T.; Tolk, N. H. Phys. Rev. B 2001, 64, 085421-1.
    15. (a) Evans, B. L.; Young, P. A. Proc. R. Soc. Lond. Ser. A 1967, 298,74. (b) Dingle, R. Festkörperprobleme XV 1975. (c) Yoffe, A. D. Adv. Phys. 1993, 42, 173.
    16. Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
    17. Buhro, W. E.; Colvin, V. L. Nature Materials 2003, 2, 138.
    18. 王崇人; 科學發展月刊 2002, 354, 48.
    19. Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
    20. (a) Han, W. Q.; Fan, S. S.; Li, Q. Q.; Hu, Y. D. Science 1997, 277, 1287. (b) Chen, C. C.; Yeh, C. C. Adv. Mater. 2000, 12, 738.
    21. (a) Martin, C. R. Science 1994, 266, 1961. (b) Pileni, M. P. Nature Materials 2003, 2, 145.
    22. Rabenau, A. Angew. Chem. Int. Ed. Engl. 1985, 24, 1026.
    23. (a) Steigrwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Korten, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. J. Am. Chem. Soc. 1988, 110, 3046. (b) Alivisatos, A. P.; Harris, T. D.; Carroll, D. J.; Steigrwald, M. L.; Brus, L. E. J. Chem. Phys. 1989, 90, 3463
    24. Murrary, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
    25. Peng, X.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
    26. Brorson, M.; Hansen, T. W.; Jacobsen, C. J. H. J. Am. Chem. Soc. 2002; 124 11582.
    27. (a) Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. W.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003, 422, 599. (b) Hu, J. Q.; Bando, Y.; Golberg, D.; Liu, Q. L. Angew. Chem. Int. Ed. Engl. 2003 42 3493.
    28. Diggel, J. W.; Downie, T. C.; Goulding, C. W. Chem. ReV. 1969, 69, 365.
    29. (a) Williams, D. A.; Baum, C. Science 2003, 302, 400. (b) Cavazzana-Calvo M.; Thrasher A.; Mavilio F. Nature 2004, 427, 779.
    30. (a) Dubensky,T. W.; Liu, M. A.; Ulmer, J. B. Mol. Med. 2000, 6, 723. (b) Liu, M. A. J. Internal Med. 2003, 253, 402.
    31. Verma, I. M.; Somia, N. Nature 1997, 389, 239.
    32. Luo, D.; Saltzman, M. W. Nature Biotechnol 2000, 18, 33.
    33. Mitchell, D. T.; Lee, S. B.; Trofin, L.; Li, N. C.; Nevanen, T. K.; Söderlund, H.; Martin, C. R. J. Am. Chem. Soc. 2002, 124, 11864.
    34. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Science 1995, 267, 1629.
    35. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B. 1997, 101, 9463.
    36. (a) Steinle, E. D.; Mitchell, D. T.; Wirtz, M.; Lee, S. B.; Young, V. Y.; Martin, C. R. Anal. Chem. 2002, 74, 2416. (b) Zhang, M.; Bando, Y.; Wada, K. J. Mater. Res. 2000, 15, 387.
    37. Peng, X. G.; Wilson, T. E.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. Engl. 1997, 36, 145.

    無法下載圖示
    QR CODE