簡易檢索 / 詳目顯示

研究生: 伍姵蓉
Wu, Pei-Jung
論文名稱: 利用超穎材料和多孔微結構實現被動太赫茲元件之研究
Exploration of Passive Terahertz Devices through Metamaterials and Porous Microstructures
指導教授: 楊承山
Yang, Chan-Shan
口試委員: 楊承山
Yang, Chan-Shan
藍彥文
Lan , Yann-Wen
楊啟榮
Yang, Chii-Rong
李晁逵
Lee, Chao-Kuei
鄭鈺潔
Chen, Yu-Chieh
口試日期: 2024/01/09
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 超材料太赫茲吸收器濾波器感測器
英文關鍵詞: Metamaterials, Terahertz, Absorber, Filter, Sensor
DOI URL: http://doi.org/10.6345/NTNU202400464
論文種類: 學術論文
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在光學領域中,傳統的光學元件,包括濾波器、吸收器和感測器,通常需要經過繁複且耗時的製程製作。然而,由於超材料具有卓越的特性,可以透過圖形設計實現其功能。在太赫茲波段的應用中,超材料工作頻段的可調製性引起了廣泛關注。此外,於太赫茲波段下所設計超材料的晶胞大小尺寸可以透過成熟的黃光微影製程實現,有助於改善太赫茲波段下光學應用的不足。
本論文主要分為三個部分。第一部分探討了利用電控方式調製石墨烯帶,並結合多個方形環組成的超材料結構,形成太赫茲濾波器。透過調整方形環的尺寸,實現了多頻段濾波功能。此外,透過施加偏壓於石墨烯帶,能夠改變石墨烯的費米能階,進而將多頻太赫茲濾波器調整為單頻濾波器,可作為開關,對於6G通訊波段的發展具有潛在應用價值。
第二部分著重於設計超材料作為超寬頻太赫茲吸收器,其在2.95至4.96 THz頻率範圍下表現出高達90 %的吸收率。同時,結合電控方式調製石墨烯,使吸收器的吸收頻段藍移,最高吸收頻率可達5.97 THz。值得注意的是,當改變入射角時,吸收體在大範圍的角度下仍能保持優異的吸收性能,表明此吸收器對於入射角具有不敏感性,有望實際應用於太赫茲偵測器。
第三部分將太赫茲超材料感測器與多孔材料結合,用於氣體感測器。以可吸收一氧化氮之薄膜為例,利用鈣鈦礦結構鈦酸鋅與還原氧化石墨烯氣凝膠形成多孔材料,與超材料整合成超材料氣體感測器進行量測。在室溫下對於50 %的一氧化氮具有16.4 %的響應,且對不同氣體的具有高度選擇性,將實現室溫下以非接觸式氣體量測提供的可能,有助於生物醫學與穿戴式裝置的發展。
第四部份將利用太赫茲超材料檢測極性液體,超材料上放置的目標材料達到一定厚度時,共振頻率變化飽和。為了有效利用超材料進行量測,需要考慮目標材料的光學特性,評估其可適用的最大厚度。超材料研究使得對薄膜介電常數深入研究成為可能,在此無需耗費大量材料。擴大檢測範圍允許深入研究各種極性液體對THz波的高度吸收的介電特性。這項研究有望克服THz波受極性液體吸收的限制,並在生物樣本檢測方面取得實質進展。
總結而言,本論文致力於不同種不同太赫茲元件的開發,包括電控調製石墨烯超材料濾波器、具廣角不敏感吸收性的石墨烯超材料吸收器,以及高度選擇性的一氧化氮氣體感測器,與液體感測器。這些應用驗證了超材料在太赫茲波段的獨特光學特性,對太赫茲波段的應用將產生深遠的影響。

In the field of optics, traditional optical components such as filters, absorbers, and sensors often require complex and time-consuming fabrication processes. However, metamaterials, with their exceptional properties, offer functional realization through graphical design. In the application of terahertz (THz) waves, the tunability of metamaterials in the working frequency range has gained widespread attention.
This paper is organized into four main sections:
Investigation of a graphene-based metamaterial for THz filtering, achieved by electrically modulating graphene ribbons within a structure composed of multiple square rings. Adjusting the sizes of these rings enables multi-band filtering, and applying voltage to the graphene ribbons facilitates the transformation from multi-band to single-band filtering, demonstrating potential applications in 6G communication.
Design of a metamaterial as a broadband THz absorber, achieving up to 90% absorption in the 2.95-4.96 THz frequency range. Modulating graphene allows for the blue-shifting of the absorber's absorption band, reaching a maximum frequency of 5.97 THz. The absorber maintains excellent performance over a wide range of incident angles, indicating potential applications in THz detectors.
Integration of a THz metamaterial sensor with porous materials for gas sensing. Utilizing a thin film capable of absorbing nitrogen dioxide, the sensor combines perovskite-structured zinc titanate and reduced graphene oxide aerogel to form a porous material integrated with the metamaterial sensor. The sensor exhibits a 16.4 % response to 50 % nitrogen dioxide at room temperature, demonstrating high selectivity for different gases and offering possibilities for non-contact gas measurements in biomedical and wearable devices.
Utilization of THz metamaterials for the detection of polar liquids. Resonant frequency saturation occurs when the target material on the metamaterial reaches a certain thickness. To optimize measurements, consideration of the optical properties of the target material and assessment of the maximum applicable thickness are necessary. This research allows for in-depth exploration of the dielectric constants of thin films without excessive material consumption, overcoming limitations posed by strong absorption of THz waves by polar liquids.
In summary, this thesis focuses on the development of various THz components, showcasing the unique optical properties of metamaterials and their profound impact on THz applications.

致謝 I 中文摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XIV 第一章、 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 超材料 (Metamaterial) 2 1.2.2 電磁濾波器 (Electromagnetic Filters) 3 1.2.3 超材料完美吸收器 (Metamaterial Perfect Absorber) 4 1.2.4 太赫茲 7 1.2.5 石墨烯 8 1.2.6 還原氧化石墨烯 (reduced Graphene Oxide, rGO) 12 1.2.7 鈦酸鋅 17 1.3 論文架構 22 第二章、 理論分析與模擬方法 23 2.1 超穎材料 23 2.2.1 局域表面電漿共振(Localized Surface Plasmon Resonance) 23 2.2.2 負折射效應 (Negative index medium) 27 2.2 石墨烯導電率模型 29 2.2.1 單層石墨烯導電特性 29 2.2.2 雙層與多層石墨烯導電特性 31 2.3 氣體感測器種類與原理 33 2.3.1 半導體式氣體感測器 (Semiconductor gas sensor) 33 2.3.2 電化學氣體感測器 (Electrochemical gas sensor) 34 2.3.3 光學式氣體感測器 (Optical gas sensor) 34 2.4 有限元素分析法 (Finite element method, FEM) 35 第三章、 以電控方式調整石墨烯之太赫茲超穎材料多頻濾波器 37 3.1 前言 37 3.2 結構設計與模擬 38 3.3 結果與討論 40 第四章、 具有廣角與極化不敏感之電控石墨烯超寬頻太赫茲超穎材料吸收器 46 4.1 前言 46 4.2 模擬與設計 47 4.3 結果與討論 49 第五章、 基於鈦酸鋅鈣鈦礦薄膜之高選擇性太赫茲超材料一氧化氮氣體感測器 57 5.1 前言 57 5.2 實驗流程與方法 59 5.2.1 鈦酸鋅氣凝膠之製備方法 59 5.2.2 ZTrGOA製備與氣體感測元件封裝 59 5.2.3 量測系統示意圖 60 5.3 結果與討論 60 第六章、 利用超穎材料量測MgCl2電解液並評估極性液體測量厚度之可行性 69 6.1 簡介 69 6.2 實驗架設與裝置 69 6.2.1 太赫茲超穎材料之設計與備製 70 6.2.2 太赫茲超穎材料元件封裝 71 6.3 結果與討論 71 第七章、 Conclusion綜合結果 75 Reference 77

Veselago, V. G. “Electrodynamics of substances with simultaneously negative ɛ and μ,” Usp. fiz. nauk, 92(7), 517 (1967).
V. M. Shalaev, “Optical negative-index metamaterials,” Nature photonics, 1(1), 41-48 (2007).
P. Zamzam, and P. Rezaei, “A terahertz dual-band metamaterial perfect absorber based on metal-dielectric-metal multi-layer columns,” Opt Quantum Electron. 53, 1-9 (2021).
X. Jing, D. Feng, Y. Tian, M. Li, C. Chu, C. Li, Y. He, H. Gan, and Z. Hong, “Design of two invisibility cloaks using transmissive and reflective metamaterial-based multilayer frame microstructures,” Opt. Express 28(24), 35528-35539 (2020).
L. Zhu, H. Li, L. Dong, W. Zhou, M. Rong, X. Zhang, and J. Guo “Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor,” Opt. Mater. Express, 11(7), 2109-2121 (2021).
R. Kumar, M. Kumar, J. S. Chohan, and S. Kumar, “Overview on metamaterial: History, types and applications,” Mater. Today: Proc. 56 3016-3024 (2022).
D. Sun, L. Qi, and Z. Liu, “Terahertz broadband filter and electromagnetically induced transparency structure with complementary metasurface,” Results Phys. 16, 102887 (2020).
L. Wu, and Y.-S. Lin, “Flexible terahertz metamaterial filter with high transmission intensity and large tuning range for optical communication application,” Phys. E: Low-Dimens. Syst. Nanostructures. 146, 115563 (2023).
G. Duan, J. Schalch, X. Zhao, A. Li, C. Chen, R. D. Averitt, and X. Zhang, “A survey of theoretical models for terahertz electromagnetic metamaterial absorbers,” Sens. Actuator A Phys. 287, 21-28 (2019).
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
D. Wang, K.-D Xu, S. Luo, Y. Cui, L. Zhang and J. Cui, “A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics,” Nanoscale 15, 3398-3407 (2023).
M. Zhong, X. Jiang, X. Zhu, J. Zhang, J. Zhong, “Design and fabrication of a single metal layer tunable metamaterial absorber in THz range,” Opt. Laser Technol. 125, 106023 (2020).
A. Mohanty, O. P. Acharya, B. Appasani, and S. K. Mohapatra, “A multi-band terahertz metamaterial absorber based on a Π and U-shaped structure,” Photonics Nanostruct. 32, 74-80 (2018).
Y. Qiu, J. Wang, M. Xiao, and T. Lang, “Broadband terahertz metamaterial absorber: design and fabrication,” Appl. Opt. 60(32), 10055-10061 (2021).
B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nature Materials 1, 26–33 (2002).
C. Wang, X. Yi, J. Mawdsley, M. Kim, Z. Wang, and R. Han “An on-chip fully electronic molecular clock based on sub-terahertz rotational spectroscopy,” Nat. Electron. 1, 421-427 (2018).
F. Sekiguchi, H. Hirori, G. Yumoto, A. Shimazaki, T. Nakamura, A. Wakamiya, and Y. Kanemitsu, “Enhancing the Hot-Phonon Bottleneck Effect in a Metal Halide Perovskite by Terahertz Phonon Excitation,” Phys. Rev. Lett. 126, 077401 (2021).
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond Sci Technol. 20(7), S266 (2005).
P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10),2438-2447 (2004).
L. Ke, Q. Y. S. Wu, N. Zhang, H. W. Liu, E. P. W. Teo, J. S. Mehta, and Y.-C. Liu, “Ex vivo sensing and imaging of corneal scar tissues using terahertz time domain spectroscopy,” Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 255, 119667 (2021).
J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga, “A Survey of Terahertz Applications in Cultural Heritage Conservation Science,” IEEE Trans. Terahertz Sci. Technol. 1(1), 220-231 (2011).
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in AtomicallyThin Carbon Films,” Science, 306(5696), 666-669 (2004).
V. Berry, “Impermeability of graphene and its applications,” Carbon 62, 1-10 (2013).
C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter, and C.T. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene–silicon hybrid metamaterial devices,” Carbon 90, 146-153 (2015).
J. Zhang, C. Zhao, N. Liu, H. Zhang, J. Liu, Y. Q. Fu, B. Guo, Z. Wang, S. Lei, and P. A. Hu, “Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms,” Scientific Reports 6, 28330 (2016).
S. Ullah, Q. Shi, J. Zhou, X. Yang, H. Q. Ta, M. Hasan, N. M. Ahmad, L. Fu, A. Bachmatiuk, M. H. Rümmeli, “Advances and Trends in Chemically Doped Graphene,” Adv. Mater. Interfaces 7(24), 2000999 (2020).
S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007).
Gonçalves, Paulo André Dias, and Nuno MR Peres, “An introduction to graphene plasmonics,” World Scientific, 2016.
S. Miryala, V. Tenace, A. Calimera, E. Macii, M. Poncino, “Ultra-low power circuits using graphene p–n junctions and adiabatic computing,” Microprocess. Microsyst. 39(8), 962-972 (2015).
Y. Zhang, Y. Feng, J. Zhao, “Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave,” Carbon 163, 244-252 (2020).
Y. Liu, R. Zhong, Z. Lian, C. Bu, and S. Liu, “Dynamically tunable band stop filter enabled by the metal-graphene metamaterials,” Scientific Reports 8(1), 2828 (2018).
A. Jiříčková, O. Jankovský, Z. Sofer and D. Sedmidubský, “Synthesis and Applications of Graphene Oxide,” Materials 15(3), 920 (2022).
A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,” Nano Materials Science 1(1), 31-47 (2019).
R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, and I. Botiz, “Reduced graphene oxide today,” J. Mater. Chem. C 8(4), 1198-1224 (2020).
S. J. Rowley-Neale, E. P. Randviir, A. S. A. Dena, C. E. Banks, “An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms,” Appl. Mater. Today 10, 218-226 (2018).
Q. Dong, M. Xiao, Z. Chu, G. Li, and Y. Zhang, “Recent progress of toxic gas sensors based on 3D graphene frameworks,” Sensors, 21(10), 3386 (2021).
Y. Xia, J. Wang, J. L. Xu, X. Li, D. Xie, L. Xiang, and S. Komarneni, “Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors,” ACS Appl. Mater. Interfaces. 8, 35454, (2016).
Q. Li, D. Chen, J. Miao, S. Lin, Z. Yu, Y. Han, Z. Yang, X. Zhi, D Cui, and Z. An, “Ag-Modified 3D Reduced Graphene Oxide Aerogel-Based Sensor with an Embedded Microheater for a Fast Response and High-Sensitive Detection of NO2,” ACS Appl. Mater. Interfaces. 12(22), 25243-25252 (2020).
P. Zhu, S. Li, C. Zhao, Y. Zhang, and J. Yu, “3D synergistical rGO/Eu(TPyP)(Pc) hybrid aerogel for high-performance NO2 gas sensor with enhanced immunity to humidity,” J. Hazard. Mater. 384, 121426 (2020).
N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Materials today 18(2), 65-72 (2015).
L. Meng, J. You, T.-F. Guo, and Y. Yang, “Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells,” Acc. Chem. Res. 49(1), 155-165 (2016).
T. Tavakoli-Azar, A. R. Mahjoub, M. S. Sadjadi, N. Farhadyar, and M. H. Sadr, “Improving the photocatalytic performance of a perovskite ZnTiO3 through ZnTiO3@S nanocomposites for degradation of Crystal violet and Rhodamine B pollutants under sunlight,” Inorg. Chem. Commun. 119, 108091 (2020).
N. Pal, M. Paul, and A. Bhaumik, “New mesoporous perovskite ZnTiO3 and its excellent catalytic activity in liquid phase organic transformations,” APPL CATAL A-GEN 393(1-2), 153-160 (2011).
R. Abirami, C.R. Kalaiselvi, L. Kungumadevi, T.S. Senthil, and M. Kang, “Synthesis and characterization of ZnTiO3 and Ag doped ZnTiO3 perovskite nanoparticles and their enhanced photocatalytic and antibacterial activity,” J. Solid State Chem. 281, 121019 (2020).
Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, “Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?” Nanoscale Adv. 1,1276-1289 (2019).
K Kusdianto, D F Nugraha, A Sekarnusa, S Madhania, S Machmudah, and S Winardi, “ZnO-TiO2 nanocomposite materials: fabrication and its applications,” IOP Conf. Ser.: Mater. Sci. Eng. 1053(1), 012024 (2021).
T. J. Chang and T. J. Hsueh, “A NO2 Gas Sensor with a TiO2 Nanoparticles/ZnO/MEMS-Structure that is Produced Using Ultrasonic Wave Grinding Technology,” J. Electrochem. Soc. 167, 027521 (2020).
M. A. Ehsan, H. Khaledi, A. Pandikumar, P. Rameshkuma, N. M. Huang, Z. Arifin, and M. Mazhar, “Nitrite ion sensing properties of ZnTiO3–TiO2 composite thin films deposited from a zinc–titanium molecular complex” New J. Chem. 39, 7442-7452 (2015).
G. Kumar, and P. K. Sarswat, “Interaction of Surface Plasmon Polaritons with Nanomaterials,” Reviews in Plasmonics 2015,103-129 (2016).
D. Lis, and F. Cecchet, “Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity,” Beilstein J. Nanotechnol. 5(1), 2275-2292 (2014).
G. Fan, K. Sun, Q. Hou, Z. Wang4 Y. Liu, and R. Fan, “Epsilon-negative media from the viewpoint of materials science,” EPJ Appl. Metamaterials 8, 11 (2021).
N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(2), 214-223 (2015).
Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257-1264 (2013).
I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostruct. 10(4), 353-358 (2012).
Q. Lin, X. Zhai, Y. Su, H. Meng, and L. Wang, “Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide,” Appl. Opt. 56(34), 9536-9541 (2017).
L. Wang, W. Li, and X. Jiang, “Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide,” Opt. Lett. 40(10), 2325-2328 (2015).
X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process,” Nano Lett. 10(11), 4328-4334 (2010).
Y. Wan, Y. An, Z. Tao, and L. Deng, “Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions,” Opt. Commun. 410, 733-739 (2018).
I. T. Lin, J. M. Liu, K. Y. Shi, P. S. Tseng, K. H. Wu, C. W. Luo, and L. J. Li, “Terahertz optical properties of multilayer graphene: Experimental observation of strong dependence on stacking arrangements and misorientation angles,” Phys. Rev. B 86(23), 235446 (2012).
R. Ma, “Quantum Hall effect in ABA- and ABC-stacked trilayer graphene,” Eur. Phys. J. B 86(6), 1-8 (2013)
C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene” Nat. Phys. 7, 944–947 (2011)
B. Mondal and P. K. Gogoi, “Nanoscale Heterostructured Materials Based on Metal Oxides for a Chemiresistive Gas Sensor,” ACS Appl. Electron. Mater. 4(1),59-86 (2022).
J. Zhang, G. Jiang, T. Cumberland, P. Xu, Y. Wu, S. Delaat, A. Yu, and Z. Chen, “A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte,” InfoMat 1(2), 234-241(2019).
X. Jia, J. Roels, R. Baets, and G. Roelkens, “On-Chip Non-Dispersive Infrared CO2 Sensor Based on an Integrating Cylinder,” Sensors 19(19), 4260 (2019).
K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and non-linear THz properties of graphene,” IEEE Trans Terahertz Sci Technol. 6(4), 223-233 (2013).
J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 1-7 (2015).
D. Wei, B. Wu, Y. Guo, G. Yu, and Y. Liu, “Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices,” J. Am. Chem. Soc. 46(1), 106-115 (2013).
N. K. Emani, A. V. Kildishev, V. M. Shalaev and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(2), 214-223 (2015).
J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene,” Phys. Rev. Lett. 98, 166802 (2007).
H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, Z. Liu, “Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition,” Small, 9(8), 1316-1320 (2013).
B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong “Controllable N-Doping of Graphene,” Nano Lett. 10(12), 4975-4980 (2010).
M. J. Park, H.-H. Choi, B. Park, J. Y. Lee, C.-H. Lee, Y. S. Choi, Y. Kim, J. M. Yoo, H. Lee, and B. H. Hong “Enhanced Chemical Reactivity of Graphene by Fermi Level Modulation,” J. Am. Chem. Soc. 30(16), 5602-5609 (2018).
M. Z. Iqbal, M. F. Khan, M. W. Iqbal and J. Eom, “Tuning the electrical properties of exfoliated graphene layers using deep ultraviolet irradiation,” J. Mater. Chem. C 2(27), 5404-5410 (2014).
Seyoung Kim, Insun Jo, D. C. Dillen, D. A. Ferrer, B. Fallahazad, Z. Yao, S. K. Banerjee, and E. Tutuc, “Direct Measurement of the Fermi Energy in Graphene Using a Double-Layer Heterostructure,” Phys. Rev. Lett. 108(11), 116404 (2012).
Z. Luo, N. J. Pinto, Y. Davila, and A. T. C. Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett. 100(25), 253108 (2012).
J. Lia, Y. Zhou, B. Quan, X. Pan, X. Xu, Z. Ren, F. Hu, H. Fan, M. Qi, J. Bai, L. Wang, J. Li, C. Gu, “Graphene–metamaterial hybridization for enhanced terahertz response,” Carbon 78, 102-112 (2014).
Z. Wei, X. Li, J. Yin, R. Huang, Y. Liu, W. Wang, H. Liu, H. Meng, and R. Liang, “Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths,” Opt. Express 24(13), 1434-14351 (2016).
K. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. S.-Rodriguez, “Graphene-based tunable metamaterial terahertz filters,” Appl. Phys. Lett. 105, 093105 (2014).
W. W. Meng, J. Lv, L. Zhang, L. Que, Y. Zhou, and Y. Jiang, “An ultra-broadband and polarization-independent metamaterial absorber with bandwidth of 3.7 THz,” Opt. Commun. 431, 255-260 (2019).
Y. Zhang, C. Cen, C. Liang, Z. Yi, X. Chen, Y. Tang, T. Yi, Y. Yi, W. Luo, and S. Xiao, “Five-Band Terahertz Perfect Absorber Based on Metal Layer–Coupled Dielectric Metamaterial,” Plasmonics 14(6), 1621-1628 (2019).
Y.-S. Jin, G.-J. Kim and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513-517 (2006).
N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance,” Nanophotonics 4(1), 214–223 (2015).
C.-S. Yang, Y.-C. Chung, Y.-S. Cheng, Y.-C. Hsu, C.-F. Chen, N.-N. Huang, H.-C. Chen, C.-H. Liu, J.-C. Hsu, Y.-F. Lin, and T.-R. Lin, “Electrically Tunable Plasmonic Biosensors Based on Cavity-Coupled Structure With Graphene,” IEEE J. Sel. Top. Quantum Electron. 27(4), 4601208 (2020).
F. Shateri, H. Babashah, and Z. Kavehvash, “Using graphene metasurface as a time lens for ultrafast signal processing in the terahertz regime,” J Opt. Soc. Am B. 35(12), C49-C56 (2018).
A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144-9155 (2013).
X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229-237. (2015).
Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743-22752 (2014).
Y. Liu, R. Zhong, J. Huang, Y. Lv, C. Han, and S. Liu, “Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials,” Opt. Express 27(5), 7393-7404 (2019).
P. Jain, S. Bansal, K. Prakash, N. Sardana, N. Gupta, S. Kumar, and A. K. Singh, “Graphene-based tunable multi-band metamaterial polarization-insensitive absorber for terahertz applications,” J. Mater. Sci. Mater. Electron 31(14), 11878-11886 (2020).
A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
P.-J. Wu, W.-C. Tsai, and C.-S. Yang, "Electrically tunable graphene-based multi-band terahertz metamaterial filters," Optics Express, 31(1), pp. 469-478
M. D. Astorino, F. Frezza, and N. Tedeschi, “Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime,” J. Appl. Phys. 121(6), 063103 (2017).
W. Pan, T. Shen, Y. Ma, Z. Zhang, H. Yang, X. Wang, X. Zhang, Y. Li, and L. Yang, “Dual-band and polarization-independent metamaterial terahertz narrowband absorber,” Appl. Opt. 60(8) 2235-2241 (2021).
J. Zhu, C. Wu, and Y. Ren, “Broadband terahertz metamaterial absorber based on graphene resonators with perfect absorption,” Results Phys. 26, 104466 (2021).
M.-R. Nickpay, M. Danaie, and A. Shahzadi, “A triple‑band metamaterial graphene-based absorber using rotated split-ring resonators for THz biomedical sensing,” Opt. Quantum Electron. 55(2),193 (2023).
W. Liu, Y. Lv, J. Tian, and R. Yang, “A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes,” Superlattices and Microstruct. 159, 107038 (2021).
Y. Cai, and K.-D. Xu, “Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure,” Opt. Express 26(24), 31693-31705 (2018).
P.-J. Wu, C.-J. Lee, and C.-S. Yang, “Electrically Tunable Graphene-Based Ultra-Broadband Terahertz Metamaterial Absorber with Wide-Angle and Polarization-Insensitivity.” Opt. Express, in preparation (2024)
M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver,” J. Phys. Chem. C 113 (8), 3041-3045 (2009).
L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154-156 (2012).
J. Zhu, C. Wu, and Y. Ren, “Broadband terahertz metamaterial absorber based on graphene resonators with perfect absorption,” Results Phys. 26, 104466 (2021).
B.-X. Wang, G.-Z. Wang, and L.-L. Wang, “Design of a Novel Dual-Band Terahertz Metamaterial Absorber,” Plasmonics 11(2), 523-530 (2016).
Y. Li, J. Wu, C. Wang, Z. Shen, D. Wu, N. Wu, and H. Yang, “Tunable broadband metamaterial absorber with single-layered graphene arrays of rings and discs in terahertz range,” Phys. Scr. 94(3), 035703 (2019).
M Trushin, and J Schliemann, “Minimum electrical and thermal conductivity of graphene: A quasiclassical approach,” Phys. Rev. Lett. 99(21), 216602 (2007).
W. Li, Y. Yi, H. Yang, S. Cheng, W. Yang, H. Zhang, Z. Yi, Y. Yi, and H. Li, “Active tunable terahertz bandwidth absorber based on single layer graphene,” Commun. Theor. Phys. 75, 045503 (2023).
G. Deng, P. Chen, J. Yang, Z. Yin, and L. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101-107 (2016).
Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104-3114 (2018).
Z. Song, M. Jiang, Y. Deng, A. Chen “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
F. Chen, Y. Cheng, and H. Luo “A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene,” Mater. 13(4), 860 (2020).
H. Zhang, F. Ling, and B. Zhang, “Broadband tunable terahertz metamaterial absorber based on vanadium dioxide and Fabry-Perot cavity,” Opt. Mater. 112, 110803 (2021).
R. Zhou, T. Jiang, Z. Peng, Z. Li, M. Zhang, S. Wang, L. Li, H. Liang, S. Ruan, and H. Su, “Tunable broadband terahertz absorber based on graphene metamaterials and VO2,” Opt. Mater. 114, 110915 (2021).
P. Fu, F. Liu, G. J. Ren, F. Su, D. Li, and J. Q. Yao, “A broadband metamaterial absorber based on multi-layer graphene in the terahertz region,” Optics Communications 417, 62-66 (2018).
L. Yan, R. Huang, and Z. Ouyang, “Numerical investigation of graphene and STO based tunable terahertz absorber with switchable bifunctionality of broadband and narrowband absorption,” Nanomater. 11(8), 2044 (2021).
J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
P.-J. Wu, J.-T. Hung, C.-F. Hsieh, C.-R. Yang*, and Chan-Shan Yang*, "High-selectivity terahertz metamaterial nitric oxide sensor based on ZnTiO3 perovskite membrane," APL Photonics, 8(10), 106103 (2023)
V. L. Vaks, E. G. Domracheva, E. A. Sobakinskaya, and M. B. Chernyaeva, “Exhaled breath analysis: physical methods, instruments, and medical diagnostics,” PHYS-USP 57(7),684 (2014).
S. Das and M. Pal, “Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review,” J. Electrochem. Soc. 167(3), 037562 (2020).
V. A. Binson, M. Subramoniam, and L. Mathew, “Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose,” J. Breath Res. 15(4), 046003 (2021).
D, Hashoul, and H. Haick, “Sensors for detecting pulmonary diseases from exhaled breath,” Eur Respir Rev 28(152), 190011 (2019).
C. Brindicci, K. Ito, O. Resta, N. B. Pride, P. J. Barnes, and S. A. Kharitonov, “Exhaled nitric oxide from lung periphery is increased in COPD,” Eur. Respir. J. 26(1), 52-59 (2005).
W. Maziak, S. Loukides, S. Culpitt, P. Sullivan, S. A. Kharitonov, and P. J. Barnes, “Exhaled nitric oxide in chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med. 157(3), 998-1002 (1998).
S.-M. Y. M.-P.-Manshadi, N. Naderi, M. Barrecheguren, A. Dehghan, and J. Bourbeau, “Investigating Fractional Exhaled Nitric Oxide in Chronic Obstructive Pulmonary Disease (COPD) and Asthma-COPD Overlap (ACO): A Scoping Review,” J. Chronic Obstr. Pulm. Dis. 15(4), 377-391 (2018).
O. Gould, N. Ratcliffe, E. Król and B. de L. Costello, “Breath analysis for detection of viral infection, the current position of the field,” J. Breath Res. 14, 041001 (2020).
F. Gebistorf, O. Karam, J. Wetterslev, and A. Afshari, “Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults,” CDSR 6 (2016)
S. M. Cristescu, J. Mandon, F. J. M. Harren, P. Meriläinen and M. Högman, “Methods of NO detection in exhaled breath,” J. Breath Res. 7, 017104 (2013).
K. Shibuki, and Neurosci. “An electrochemical microprobe for detecting nitric oxide release in brain tissue,” Neurosci. Res. 9(1),69-76 1990.
A. Marikutsa, A. Novikova, M. Rumyantseva, N. Khmelevsky, and A. Gaskov, “Comparison of Au-functionalized semiconductor metal oxides in sensitivity to VOC,” Sens. Actuators B Chem 326, 128980 (2021).
H. Liu, G. Meng, Z. Deng, K. Nagashima, S. Wang, T. Dai, L. Li, T. Yanagida, and X. Fang, “Discriminating BTX molecules by the nonselective metal oxide sensor-based smart sensing system,” ACS Sens. 6(11),4167-4175 (2021).
J. Kneer1, A. Eberhardt, P. Walden, A. Ortiz Pérez, J. Wöllenstein, and S. Palzer, “Apparatus to characterize gas sensor response under real-world conditions in the lab,” Rev. Sci. Instrum. 85, 055006 (2014).
M. Jeon, B. Choi, J. Yoon, D. M. Kim, D. H. Kim, I. Park, and S.-J. Choi, “Enhanced sensing of gas molecules by a 99.9% semiconducting carbon nanotube-based field-effect transistor sensor,” Appl. Phys. Lett. 111, 022102 (2017).
L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li, H. Ji, X. Chen, G. Niu, J. Yan, Y. Xue, and H. Cheng, “Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis,” Microsyst. Nanoeng. 8(1), 78 (2022).
S. Wei, Z. Li, K. Murugappan, Z. Li, F. Zhang, A. G. Saraswathyvilasam, M. Lysevych, H. H. Tan, C. Jagadish, A. Tricoli, and L. Fu, “A Self‐Powered Portable Nanowire Array Gas Sensor for Dynamic NO2 Monitoring at Room Temperature,” Adv. Mater. 35(12), 2207199 (2023).
E. Pargoletti, U. H. Hossain, I. D. Bernardo, H. Chen, T. T.-Phu, G. L. Chiarello, J. L.-Duffin, V. Pifferi, A. Tricoli, and G. Cappelletti, “Engineering of SnO2–Graphene Oxide Nanoheterojunctions for Selective Room-Temperature Chemical Sensing and Optoelectronic Devices,” ACS Appl. Mater. Interfaces 12 (35), 39549-39560 (2020).
A. Panda, S. K. Arumugasamy, J. Lee, Y. Son, K. Yun, S. Venkateswarlu, and M. Yoon, “Chemical-free sustainable carbon nano-onion as a dual-mode sensor platform for noxious volatile organic compounds,” Appl. Surf. Sci. 537, 147872 (2021).
J. Wang, B. Singh, S. Maeng, H.-I. Joh, and G.-H. Kim, “Assembly of thermally reduced graphene oxide nanostructures by alternating current dielectrophoresis as hydrogen-gas sensors,” Appl. Phys. Lett. 103, 083112 (2013).
S. Jayabal, P. Viswanathan and R. Ramaraj, “Reduced graphene oxide–gold nanorod composite material stabilized in silicate sol–gel matrix for nitric oxide sensor,” RSC Adv. 4(63), 33541–33548 (2014).
C. Esteves, E. Ramou, A. R. P. Porteira, A. J. M. Barbosa, and A. C. A. Roque, “Seeing the unseen: the role of liquid crystals in gas‐sensing technologies,” Adv. Opt. Mater. 8(11), 1902117 (2020).
K. Anand, J. Kaur, R. C. Singh, and R. Thangaraj, “Effect of terbium doping on structural, optical and gas sensing properties of In2O3 nanoparticles,” Mater. Sci. Semicond. Process. 39, 476-483 (2015).
R. E. Owyeung, M. J. Panzer, and S. R. Sonkusale, “Colorimetric Gas Sensing Washable Threads for Smart Textiles,” Sci. Rep. 9(1), 5607 (2019).
T. Wang, S. Zhang, Q. Yu, S. Wang, P. Sun, H. Lu, F. Liu, X. Yan, and G. Lu, “Mouse a-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt,” ACS Appl. Mater. Interfaces 10(38), 32918-32921 (2018).
W. Leng, H. Zhan, L. Ge, W. Wang, Y. Ma, K. Zhao, S. Li, and L. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel 159, 84-88 (2015).
L. Afsah-Hejri, P. Hajeb, P. Ara, R. J. Ehsani, “A comprehensive review on food applications of terahertz spectroscopy and imaging,” CRFSFS 18(5), 1563-1621 (2019).
L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9, 9354-9363 (2019).
J.-H. Son, S. J. Oh, and H. Cheon, “Potential clinical applications of terahertz radiation,” J. Appl. Phys. 125, 190901 (2019).
L. A. Sterczewski, J. Westberg, Y. Yang, D. Burghoff, J. Reno, Q. Hu, and G. Wysocki, “Terahertz spectroscopy of gas mixtures with dual quantum cascade laser frequency combs,” ACS Photonics 7(5), 1082-1087 (2020).
M. Araki, Y. Tabata, N. Shimizu, K. Matsuyama, “Terahertz spectroscopy of CO and NO: The first step toward temperature and concentration detection for combustion gases in fire environments,” J. Mol. Spectrosc. 361, 34-39 (2019).
J. Xia, Feng Zhu, J. Bounds, E. Aluauee, A. Kolomenskii, Q. Dong, J. He, Cain Meadows, S. Zhang, and H. Schuessler, “Spectroscopic trace gas detection in air-based gas mixtures: Some methods and applications for breath analysis and environmental monitoring,” J. Appl. Phys. 131, 220901 (2022).
M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266-6294 (2016).
D. Popa, and F. Udrea, “Towards integrated mid-infrared gas sensors,” Sensors 19(9), 2076 (2019).
M. Theuer, S. S. Harsha, D. Molter, G. Torosyan, and R. Beigang “Terahertz Time-Domain Spectroscopy of Gases, Liquids, and Solids,” ChemPhysChem 12, 2695-2705 (2011).
N. Rothbart, O. Holz, R. Koczulla, K. Schmalz, and H.-W. Hübers, “Analysis of human breath by millimeter-wave/terahertz spectroscopy,” Sensors 19(12), 2719 (2019).
Z. Li, N. Rothbart, X. Deng, H. Geng, X. Zheng, P. Neumaier, and H.-W. Hübers, “Qualitative and quantitative analysis of terahertz gas-phase spectroscopy using independent component analysis,” Chemometr. Intell. Lab Syst. 206, 104129 (2020).
D. J. Tyree, P. Huntington, J. Holt, A. L. Ross, R. Schueler, D. T. Petkie, S. S. Kim, C. C. Grigsby, C. Neese, and I. R. Medvedev, “Terahertz spectroscopic molecular sensor for rapid and highly specific quantitative analytical gas sensing,” ACS Sens. 7(12), 3730–3740 (2022).
J. Ma, S. Wang, Y. Yang, K. Wang, L. Guo, and Y. Gong, “Simulation of terahertz-band metamaterial sensor for thin film analyte detection,” AIP Advances 10, 085227 (2020)
Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111, 201101 (2017).
C. Zhang, J. Wu, B. Jin, X. Jia, L. Kang, W. Xu, H. Wang, J. Chen, M. Tonouchi, and P. Wu, “Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial,” Appl. Phys. Lett. 110, 241105 (2017).
D. Zhang, Z. Li, K. Fan, T. Chen, B. Jia, S. Pan, and Y. Tang, “Dynamically tunable terahertz metamaterial sensor based on metal–graphene hybrid structural unit,” AIP Advances 12(2), 025206 (2022).
G. Lu, S. Park, K. Yu, R. S. Ruoff, L. E. Ocola, D. Rosenmann, and J. Chen, “Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations,” ACS Nano 5(2), 1154–1164 (2011).
P.-G. Su, and H.-C. Shieh, “Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide” Sens. Actuators B Chem. 190, 865-872 (2014).
L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, S. Xu, L. Shen, Q. Chen, and W. Shi, “Fully Printed, Rapid-Response Sensors Based on Chemically Modified Graphene for Detecting NO2 at Room Temperature” ACS Appl. Mater. Interfaces 6(10), 7426–7433 (2014).
K. S. Ranjith and T. Uyar, “ZnO–TiO2 composites and ternary ZnTiO3 electrospun nanofibers: The influence of annealing on the photocatalytic response and reusable functionality” CrystEngComm 20(38), 5801-5813 (2018).
R. K. Sonker, B. C. Yadav, V. Gupta, and M. Tomar, “Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases,” J. Hazard. Mater. 370, 126-137 (2019).
A. R. Phani, M. Passacantando and S. Santucci, “Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol–gel process assisted by microwave irradiation,” J. Phys. Chem. Solids 68(3),317-323 (2007).
R. Abirami, C. R. Kalaiselvi, L. Kungumadevi, T. S. Senthil, and M. Kang, “Synthesis and characterization of ZnTiO3 and Ag doped ZnTiO3 perovskite nanoparticles and their enhanced photocatalytic and antibacterial activity,” J. Solid State Chem. 280, 121019 (2020).
S. Ruan, Ji. Lu, N. Pai, H. E.-Heidepriem, Y.-B. Cheng, Y. Ruan, and C. R. McNeill, “An optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite,” J. Mater. Chem. C 6(26), 6988-6995 (2018).
A. Maity, A. K. Raychaudhuri, and B. Ghosh, “High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material,” Sci. Rep. 9(1), 7777 (2019).
G. Li, Y. Zhang, J. Lin, X. Xu, S. Liu, J. Fang, C. Jing, and J. Chu, “Anomalous NH3-Induced Resistance Enhancement in Halide Perovskite MAPbI3 Film and Gas Sensing Performance,” J. Phys. Chem. Lett. 12(46), 11339-11345 (2021).
E. Fedulova, M. Nazarov, A. Angeluts, M. Kitai, and V. Sokolov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine XIII. 8337, SPIE, (2012).
W. Nsengiyumva, S. Zhong, M. Luo, and B. Wang, “Terahertz Spectroscopic Characterization and Thickness Evaluation of Internal Delamination Defects in GFRP Composites,” Chin. J. Mech. Eng. 36(1), 1-21 (2023)
M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128-1130 (1989).
A. Alvarez-Fernandez, C. Cummins, M. Saba, U. Steiner, G. Fleury, V. Ponsinet, and S. Guldin, “Block copolymer directed metamaterials and metasurfaces for novel optical devices,” Adv. Opt. Mater. 9(16), 2100175 (2021).
S. Xiao, T. Wang, Y. Liu, X. Han, and X. Yan, “An ultrasensitive and multispectral refractive index sensor design based on quad-supercell metamaterials,” Plasmonics 12, 185-191 (2017)
Y.-S. Chang, Y.-H. Chang, I.-G. Chen, G.-J. Chen, Y.-L. Chai, T.-H. Fang, and S. Wu, “Synthesis, formation and characterization of ZnTiO3 ceramics,” Ceram. Int. 30(8), 2183-2189 (2004).
J. Lim, K. Choi, J. R. Rani, J.-S. Kim, C. Lee, Jae Hoon Kim, and S. C. Jun, “Terahertz, optical, and Raman signatures of monolayer graphene behavior in thermally reduced graphene oxide films,” J. Appl. Phys. 113, 183502 (2013).
F. Khurshid, M. Jeyavelan, M. S. L. Hudson and S. Nagarajan, “Ag-doped ZnO nanorods embedded reduced graphene oxide nanocomposite for photo-electrochemical applications,” R. Soc. Open Sci. 6(2), 181764 (2019).
Md. A. Rashed, M. Faisal, F. A. Harraz, M. Jalalah, M. Alsaiari, M.S. A.-Assiri, “rGO/ZnO/Nafion nanocomposite as highly sensitive and selective amperometric sensor for detecting nitrite ions (NO2−),” J. Taiwan Inst. Chem 112, 345-356 (2020).
K. Kacem, J. Casanova-Chafer, A. Hamrouni, S. Ameur, F. Güell, M. F. Nsib amd E. Llobet, “ZnO–TiO2/rGO heterostructure for enhanced photodegradation of IC dye under natural solar light and role of rGO in surface hydroxylation,” Bull. Mater. Sci. 46(2), 83 (2023).
Y. Guo, Y. Han, Y. Guo, and C. Dong, “Graphene-Orange II composite nanosheets with electroactive functions as label-free aptasensing platform for “signal-on” detection of protein,” Biosens Bioelectron 45, 95-101 (2013).
F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95, 186101 (2005).
W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform” Carbon 141, 247-252 (2019).
Z. Wang, S. Gao, T. Fei, S. Liu, and T. Zhan, “Construction of ZnO/SnO2 Heterostructure on Reduced Graphene Oxide for Enhanced Nitrogen Dioxide Sensitive Performances at Room Temperature,” ACS Sens. 4(8), 2048–2057 (2019).
H. Gao, Y. Ma, P. Song, J. Leng, and Q. Wang, “Gas sensor based on rGO/ZnO aerogel for efficient detection of NO2 at room temperature,” J. Mater. Sci.: Mater. Electron. 32, 10058-10069 (2021).
S. B. Tooski, A. Godarzi, M. Sh. Solari, M. Ramyar, A. Roohforouz, “Optical properties of carbon nanotube gas sensor,” J. Appl. Phys. 110(3) (2011)
A. Ioana, T. Rashad, A. Tilman, F. Martina, P. Burkert, L. Florian, and V. Jakob, “Inhibition of osteo/chondrogenic transformation of vascular smooth muscle cells by MgCl2 via calcium-sensing receptor,” J. Hypertens. 35(3), 523-532 (2017).
Q. Yang, D. Huo, C. Si, G. Fang, Q. Liu, Q. Hou, X. Chen, and F. Zhang, “Improving enzymatic saccharification of eucalyptus with a pretreatment process using MgCl2” Ind Crops Prod 123,401-406 (2018).
S. Sadir, S. Tabassum, S. Emad, L. Liaquat, Z. Batool, S. Madiha, S. Shehzad, I. Sajid and Saida Haider, “Neurobehavioral and biochemical effects of magnesium chloride (MgCl2), magnesium sulphate (MgSO4) and magnesium-L-threonate (MgT) supplementation in rats: A dose dependent comparative study” Pakistan Journal of Pharmaceutical Sciences 32 (2019).
P.-J. Wu, C.-L. Lin, and C.-S. Yang, “Measurement of MgCl2 Electrolyte Using Metamaterials and Evaluation of the Feasibility of Measuring Thickness of Polar Liquidse.” Opt. Express, in preparation (2024)
S. J. Park, S. A. N. Yoon and Y. H. Ahn, “Dielectric constant measurements of thin films and liquids using terahertz metamaterials,” RSC Adv. 6, 69381-69386 (2016).
A. Chandra, “Static dielectric constant of aqueous electrolyte solutions: Is there any dynamic contribution?” J. Chem. Phys. 113, 903–905 (2000).
D. K. George, A. Charkhesht, and N. Q. Vinh, “New terahertz dielectric spectroscopy for the study of aqueous solutions,” Rev. Sci. Instrum. 86, 123105 (2015).

無法下載圖示 本全文未授權公開
QR CODE