研究生: |
許耀文 Hsu, Yao-Wen |
---|---|
論文名稱: |
氧化鋅奈米柱在兆赫波段之導電率和光學常數之探討及其應用 Terahertz conductivites and Optical constant of ZnO nanorods and Their Application |
指導教授: |
李亞儒
Lee, Ya-Lu 楊承山 Yang, Chan-Shan |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 光電導天線配置的兆赫波時域光譜 、水熱法 、氧化鋅奈米柱 |
英文關鍵詞: | terahertz time-domain spectroscopy, photoconductive antenna |
DOI URL: | http://doi.org/10.6345/NTNU201900993 |
論文種類: | 學術論文 |
相關次數: | 點閱:201 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用兆赫波時域光譜來研究氧化鋅奈米柱結構的透射率,進而去計算出不同水熱生長環境製成氧化鋅奈米柱複介電系數、光導率、進而使用德魯德史密斯模型得出氧化鋅材料的遷移率和兆赫波電導率。
本論文使用水熱法成長氧化鋅奈米柱陣列,並使用光電導天線配置的兆赫波時域光譜對材料進行解析。飛秒雷射被分束器分成泵浦光束和探測光束,兩者都透過物鏡聚焦在光電導偶極子天線上,泵浦脈衝激勵光電導天線中的載流子,然後我們使用拋物面鏡來準直兆赫波並聚焦在樣本上,最後利用另一對拋物面鏡收集兆赫的透射率。
最後使用計算軟體求得材料的複介電系數、光導率和遷移率、並且比較不同水熱生長時間下的氧化鋅奈米柱對兆赫波時域光譜的影響。
In this study, we use terahertz time-domain spectroscopy to figure out the transmittance of zinc oxide nanorods structure, and then calculate the complex dielectric coefficient, and use Drude-Smith model in different hydrothermal growth condition. The model derives the mobility of the zinc oxide mobility and the terahertz conductivity.
In this thesis, a hydrothermal method is used to grow a zinc oxide nanopillar array, and the material is analyzed using terahertz time-domain spectrum of a photoconductive antenna configuration. The femtosecond laser is split into a pump beam and a probe beam by a beam splitter, both of which are focused by an objective lens on a photoconductive dipole antenna. The pump pulse excites the carriers in the photoconductive antenna, and then we use a parabolic mirror to the direct megahertz wave is focused on the sample, and finally another pair of parabolic mirrors are used to collect the terahertz transmittance.
Finally, the complex dielectric coefficient, light conductivity and mobility of the material were obtained using the calculation software, and compared the influence of the zinc oxide nanorods in different hydrothermal time on the time-domain spectrum of the terahertz wave.
[1] J. H. Strait, P. A. George, M. Levendorf, Martin Blood-Forsythe, Farhan Rana, and Jiwoong Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy,” Nano Lett., Vol. 9, No. 8, pp. 2967-2972, June 2009
[2] K. Ajito and Y. Ueno, “THz Chemical Imaging for Biological Applications,” IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, pp. 293-300, September 2011
[3] B. B. Hu and M. C. Nuss, W E. Sleat, and W Sibbett, “Imaging with terahertz waves,” Opt. Lett., Vol. 20, No. 16, pp. 1716-1718, August 1995.
[4] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., Vol. 45, No. 3, pp. 284-286, May 1984.
[5] A. Rice, Y. Jin, X. F. Ma, X.C. Zhang, D. Bliss et al., “Terahertz optical rectification from 110 zincblende crystals,” Appl. Phys. Lett., Vol. 64, No. 11, pp. 1324-1326, March 1994.
[6] X.C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett., Vol. 56, No. 11, pp. 1011-1013, March 1990.
[7] R. Köhler et al, “Terahertz semiconductor heterostructure laser,” NATURE, Vol. 417, No. 6885, pp. 156-159, May 2002.
[8] Q. Wu and X.C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., Vol. 67, No. 24, pp. 3523-3525, December 1995.
[9] D. E. Spence, J. M. Evans, W E. Sleat, and W Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett., Vol. 16, No. 22, pp. 1762-1764, November 1991.
[10] P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. Hoe Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient Terahertz Conductivity of GaAs Nanowires,” Nano Lett., Vol. 7, No. 7, pp. 2162-2165, June 2007.
[11] T.J Hsueh, H. Y. Chen, T. Ying Tsai, W. Y. Weng, Y. M. Yeh, B. T. Dai, and . M. Shieh, “Si Nanowire-Based Photovoltaic Devices Prepared at Various Temperatures,” IEEE Electron Device Lett., Vol. 31, No. 11, pp. 1275-1277, November 2010.
[12] J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Optics Express, Vol. 19, No. S3, pp. A258-A268, May 2011.
[13] S. H. Lee and N. Y. Ha, “Nanostructured indium-tin-oxide films fabricated by all-solution processing for functional transparent electrodes,” Optics Express, Vol. 19, No. 22, pp. 21803-21808, October 2011.
[14] Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, T. Y. Tsai, and W. C. Liu, “Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode,” Optics Express, Vol. 19, No. 15, pp. 14662-14670, July 2011.
[15] T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos et al., “Indium–tin–oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys., Vol. 92, No. 4, pp. 2210-2212, August 2002.
[16] D. G. Cooke and P. Uhd Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Optics Express, Vol. 16, No. 19, pp. 15123-15129, September 2008.
[17] J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Optics Express, Vol. 15, No. 11, pp. 6552-6560, May 2007.
[18] C. W. Chen, Y. C. Lin, C. H. Chang, P. Yu, J. M. Shieh, and C. L. Pan, “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared,” IEEE Journal of Quantum Electronics, Vol. 46, No. 12, pp. 1746-1754, December 2010.
[19] M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B, Vol. 41, No. 17, pp. 12140-12149, 1990.
[20] S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett., Vol. 79, No. 24, pp. 3923-3925, December 2001.
[21] M. Dressel and M. Scheffler, “Verifying the Drude response,” Ann. Phys. (Leipzig), Vol. 15, No. 7-8, pp. 535-544, May 2006.
[22] N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B, Vol. 64, pp. 155106, 2001.
[23] R. Ulbricht, E. Hendry, J. Shan, T. F. Hein, M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Reviews of Modern Physics, Vol. 83, pp. 543-586, June 2011.
[24] D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B, Vol. 73, pp. 193311, May 2006.
[25] M. C. Beard, G. M. Turner, J. E. Murphy, O. I. Micic, M. C. Hanna, A. J. Nozik, and C. A. Schmuttenmaer, “Electronic Coupling in InP Nanoparticle Arrays,” Nano Lett., Vol. 3, No. 12, pp. 1695-1699, October 2003.
[26] J. Dai, J. Liu, and X. C. Zhang, “Terahertz Wave Air Photonics: Terahertz Wave Generation and Detection With Laser-Induced Gas Plasma,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 1, pp. 183-190, January 2011.
[27] Q. L. Jin Li, D. Tran, C. Luo, Y. Gao, C. Yu and F. Xuan“Engineering of carbon nanotube/ polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors” J. Mater. Chem. C, 2017, 5, 11092-11099
[28] Q. Li , Z. Ullah , W. Li , Y. Guo , J. Xu , R. Wang , Q. Zeng ,M. Chen , C. Liu , and L. Liu “Wide-Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Ag-Nanowires Hybrid Structures” 2016, 12, No. 36, 5058–5065
[29] X. Chang, S. Sun, S. Sun, T. Liu, X. Xiong, Y. Lei, L. Dong, Y. Yin “ ZnO nanorods/carbon black-based flexible strain sensor for detecting human motions” Journal of Alloys and Compounds 738 (2018) 111-117
[30] X. Wang, J. Li, H. Song, H. Huang, and J. Gou“Highly Stretchable and Wearable “Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity” ACS Appl. Mater. Interfaces 2018, 10, 7371−7380
[31] Q. Li , J. Li, D. Tran, C. Luo,Y. Gao,C. Yub and F. Xuan “Engineering of carbon nanotube polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors” J. Mater. Chem. C, 2017,5, 11092
[32] Q. Liao, M. Mohr, X. Zhang,Z. Zhang,Y. Zhang and H. Jorg Fecht“Carbon fiber–ZnO nanowire hybrid structures for flexible and adaptable strain sensors” Nanoscale, 2013, 5, 12350
[33] M. Sakai, Yuta Inose,K. Ema,T. Ohtsuki,H. Sekiguchi,A. Kikuchi,and K. Kishino“Random laser action in GaN nanocolumns” APPLIED PHYSICS LETTERS 97, 151109 (2010)
[34] 楊寶賡, “雷射工程, ” 新文京開發, 第32-40頁
[35] http://www.lasertech.tw/index.php
[36] F. M. Zehentbauer , C. Moretto , R. Stephen , T. Thevar , J. R. Grilchrist , D. Pokrajac , K. L. Richard , J. Kiefer, “Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects,” Spectrochimica Acta Part A: Molecular and biomolecular Spectroscopy 121 (2014) 147-151.
[37] Meng, Xiangeng, Studies on Novel Light Emitting Materials Based on Random Systems, Department of Material Chemistry, Graduate School of Engineering, Kyoto University. 2008,
[38] H. Cao and Y. G. Zhao“Random Laser Action in Semiconductor Powder”
[39] N.Xu,Y.Cui,Z.Hu,W.Yu,Ji.Sun,N.Xu,and J. Wu“Photoluminescence and low-threshold lasing of ZnO nanorod arrays” 2 July 2012 / Vol. 20, No. 14 / OPTICS EXPRESS 14857
[40] S. Yamabi, and H. Imai“Crystal Phase Control for Titanium Dioxide Films by Direct Deposition in Aqueous Solutions” Chem. Mater. 2002, 14, 609-614
[41] L. Vayssieres “Growth of Arrayed Nanorods and Nanowiresof ZnO from Aqueous Solutions” Adv. Mater. 2003, 15, No. 5, March 4
[42] L. E. Greene, M. Law, J. Goldberger, . Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang“Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays” Angew. Chem. Int. Ed. 2003, 42, 3031-3034
[43] 黃惠忠。2004。奈米材料分析。滄海書局。台中。
[44] R. Sapienza,P. D. Garcı´a,J. Bertolotti,M. D. Martı´n,A´ . Blanco,L. Vin˜a,C. Lo´pez,and D. S. Wiersma“Observation of Resonant Behavior in the Energy Velocity of Diffused Light” PRL 99, 233902 (2007)
[45] Lasing in random media (2003) R3-R4
[46] J. B. Baxter and Charles A. Schmuttenmaer, “Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy,” J. Phys. Chem. B, Vol. 110, pp. 25229-25239, August 2006
[47] H. C. Weissker, J. Furthmu¨ller, and F. Bechstedt, “Validity of effective-medium theory for optical properties of embedded nanocrystallites from ab initio supercell calculations,” Phys. Rev. B, Vol. 67, pp. 165322, 2003
[48] J. Han, W. Zhang,W. Chen, “Terahertz Dielectric Properties and Low-Frequency Phonon Resonances of ZnO Nanostructures” J. Phys. Chem. C 2007, 111, 13000-13006
[49] K. Žídek, K. Zheng, C. S. Ponseca“Electron Transfer in Quantum-Dot-Sensitized ZnO Nanowires: Ultrafast Time-Resolved Absorption and Terahertz Study” J. Am. Chem. Soc. 2012, 134, 12110−12117(2012)
[50] M. Bashirpour, M. Forouzmehr, s. e. Hosseininejad“Improvement of terahertz photoconductive Antenna using optical Antenna Array of Zno Nanorods” Scientific RepoRts (2019) 9:1414