研究生: |
屈軒宇 Chiu, Daniel |
---|---|
論文名稱: |
基於生成對抗式網路的人臉影像身分重建 Generative Adversarial Networks-based Face Hallucination with Identity-Preserving |
指導教授: |
葉家宏
Yeh, Chia-Hung |
口試委員: |
張傳育
Chang, Chuan-Yu 林青嶔 Lin, Ching-Chin 葉家宏 Yeh, Chia-Hung |
口試日期: | 2021/07/08 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 人臉辨識 、人臉重建 、深度學習 、卷積神經網路 、生成對抗式網路 |
英文關鍵詞: | face recognition, face hallucination, deep learning, convolution neural network, generative adversarial network |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101367 |
論文種類: | 學術論文 |
相關次數: | 點閱:115 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於卷積神經網路的人臉辨識技術已經達成極高的準確率並且廣泛應用於各種場域,然而在特定的應用場合人臉辨識技術還是有很大的挑戰,特別是影像品質不佳的監控設備環境下,人會與鏡頭有較大的距離,導致人臉影像解析度過低造成人臉身分難以辨識,為此我們提出一個新穎的基於生成對抗式網路的人臉影像重建網路,藉由學習低解析度的人臉影像與高解析度的人臉影像之映射關係,我們可以從低解析度人臉影像重建出高解析度人臉影像,此外我們使用Feature Embedding的方法從網路的輸出層得到人臉身分特徵,並且利用三元組損失計算人臉身分特徵用以訓練神經網路,使神經網路可以藉由人臉身分特徵表達做相應的高解析度人臉影像重建,實驗階段我們使用了公開的人臉資料集CASIA-WebFaces進行訓練,並與近年來基於深度學習所提出的底解析度人臉重建方法作為比較並稱為傳統方法。實驗結果表明我們所提出的極低解析度人臉重建網路在大倍率放大的影像品質與辨識率優於傳統方法。
Recently, face recognition technology based on convolutional neural networks has achieved extremely high accuracy and has widely used in various fields, but face recognition technology still has great challenges in specific applications, especially in the environment of surveillance equipment with poor image quality, people usually have a large distance from the lens, resulting in low face image resolution and difficult recognition of the face identity. For this reason, we propose a novel generative adversarial networks-based face hallucination framework for producing high-resolution face images from very low-resolution ones, by training the network to find the mapping relationship between low-resolution face images and high-resolution ones, we can hallucinate corresponding high-resolution faces, and Embedding's feature adopted to extract face identity features from the output layer of the network, and a triplet-based identity preserving loss for extracting identity-aware facial representations. to train the face identity information to update the parameters of the network so that the face reconstruction network can well super-resolve very LR face images.
[1] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815-823).
[2] https://news.ltn.com.tw/news/world/paper/1281878
[3] https://ws.moi.gov.tw/001/Upload/OldFile/news_file/108年第27週內政統計通報_便利商店竊盜.pdf
[4] Zou, W. W., & Yuen, P. C. (2011). Very low resolution face recognition problem. IEEE Transactions on image processing, 21(1), 327-340.
[5] Hsu, C. C., Lin, C. W., Su, W. T., & Cheung, G. (2019). Sigan: Siamese generative adversarial network for identity-preserving face hallucination. IEEE Transactions on Image Processing, 28(12), 6225-6236.
[6] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
[7] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
[8] Dong, C., Loy, C. C., He, K., & Tang, X. (2015). Image super-resolution using deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2), 295-307.
[9] Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop, R., ... & Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1874-1883).
[10] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., ... & Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4681-4690).
[11] Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., ... & Change Loy, C. (2018). Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European conference on computer vision (ECCV) workshops (pp. 0-0).
[12] Chen, Y., Tai, Y., Liu, X., Shen, C., & Yang, J. (2018). Fsrnet: End-to-end learning face super-resolution with facial priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2492-2501).
[13] Kortli, Y., Jridi, M., Al Falou, A., & Atri, M. (2020). Face recognition systems: A survey. Sensors, 20(2), 342.
[14] Déniz, O., Bueno, G., Salido, J., & De la Torre, F. (2011). Face recognition using histograms of oriented gradients. Pattern recognition letters, 32(12), 1598-1603.
[15] Gupta, S., Sahoo, O. P., Goel, A., & Gupta, R. (2010). A new optimized approach to face recognition using eigenfaces. Global Journal of Computer Science and Technology.
[16] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708).
[17] Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1125-1134).
[18] Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv preprint arXiv:1411.7923.
[19] Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). Openface: A general-purpose face recognition library with mobile applications. CMU School of Computer Science, 6(2).
[20] Li, J., Zhou, Y., Ding, J., Chen, C., & Yang, X. (2020). Id preserving face super-resolution generative adversarial networks. IEEE Access, 8, 138373-138381.
[21] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[22] Wu, X., He, R., Sun, Z., & Tan, T. (2018). A light cnn for deep face representation with noisy labels. IEEE Transactions on Information Forensics and Security, 13(11), 2884-2896.