研究生: |
崔鈺君 Tsui, Yu-Juin |
---|---|
論文名稱: |
以新穎配位基合成錳-氧加成物及其對9,10-Dihydroanthracene的催化探討 Synthesis of Mn-O2 Adduct with a Novel Ligands and its Catalysis of 9,10-Dihydroanthracene |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 含錳-氧合酶 、四價錳過氧錯合物(peroxo) 、三價錳過氧氫化物(hydroperoxo) 、DHA催化反應 |
英文關鍵詞: | Mn enzymes, Mn(IV)-peroxo complex, Mn(III)-hydroperoxo complex, DHA catalyzed reaction |
DOI URL: | http://doi.org/10.6345/NTNU202000719 |
論文種類: | 學術論文 |
相關次數: | 點閱:135 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Schmidt, S. B.; Husted, S., The Biochemical Properties of Manganese in Plants. Plants (Basel, Switzerland) 2019, 8, 381.
2. Rapatskiy, L.; Cox, N.; Savitsky, A.; Ames, W. M.; Sander, J.; Nowaczyk, M. M.; Rögner, M.; Boussac, A.; Neese, F.; Messinger, J.; Lubitz, W., Detection of the Water-Binding Sites of the Oxygen-Evolving Complex of Photosystem II Using W-Band 17O Electron–Electron Double Resonance-Detected NMR Spectroscopy. J. Am. Chem. Soc. 2012, 134, 16619-16634.
3. Askerka, M.; Brudvig, G. W.; Batista, V. S., The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data. Acc. Chem. Res. 2017, 50, 41-48.
4. Najafpour, M. M.; Renger, G.; Hołyńska, M.; Moghaddam, A. N.; Aro, E.-M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen, J.-R.; Allakhverdiev, S. I., Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem. Rev. 2016, 116, 2886-2936.
5. McEvoy, J. P.; Brudvig, G. W., Water-Splitting Chemistry of Photosystem II. Chem. Rev. 2006, 106, 4455-4483.
6. Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N., Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55-60.
7. Nakamura, S.; Noguchi, T., Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem IIcluster in photosystem II. Proc. Natl. Acad. Sci. 2016, 113, 12727.
8. Sakamoto, H.; Shimizu, T.; Nagao, R.; Noguchi, T., Monitoring the Reaction Process During the S2 → S3 Transition in Photosynthetic Water Oxidation Using Time-Resolved Infrared Spectroscopy. J. Am. Chem. Soc. 2017, 139, 2022-2029.
9. Cox, N.; Retegan, M.; Neese, F.; Pantazis, D. A.; Boussac, A.; Lubitz, W., Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation. Science 2014, 345, 804.
10. Hoganson, C. W.; Babcock, G. T., A Metalloradical Mechanism for the Generation of Oxygen from Water in Photosynthesis. Science 1997, 277, 1953.
11. McEvoy, J. P.; Gascon, J. A.; Batista, V. S.; Brudvig, G. W., The mechanism of photosynthetic water splitting. Photochem. Photobiol. Sci. 2005, 4, 940-949.
12. Vrettos, J. S.; Limburg, J.; Brudvig, G. W., Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta-Bioenerg. 2001, 1503, 229-245.
13. Miller, M. A.; Lipscomb, J. D., Homoprotocatechuate 2,3-Dioxygenase from Brevibacterium fuscum: A DIOXYGENASE WITH CATALASE ACTIVITY. J. Biol. Chem. 1996, 271, 5524-5535.
14. Christian, G. J.; Ye, S.; Neese, F., Oxygen activation in extradiol catecholate dioxygenases – a density functional study. Chemical Science 2012, 3, 1600-1611.
15. Emerson, J.; Kovaleva, E.; Farquhar, E.; Lipscomb, J.; Que, L., Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state. Proc.Nat.Acad.Sci.Usa 2008, 105, 7347-52.
16. Whiting, A. K.; Boldt, Y. R.; Hendrich, M. P.; Wackett, L. P.; Que, L., Manganese(II)-Dependent Extradiol-Cleaving Catechol Dioxygenase from Arthrobacter globiformis CM-2. Biochemistry 1996, 35, 160-170.
17. Miller, A.-F., The shortest wire. Proc. Natl. Acad. Sci. 2008, 105, 7341.
18. Zhu, W.; Richards, N. G. J., Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochem. 2017, 61, 259-270.
19. Gunderson, W. A.; Zatsman, A. I.; Emerson, J. P.; Farquhar, E. R.; Que, L.; Lipscomb, J. D.; Hendrich, M. P., Electron Paramagnetic Resonance Detection of Intermediates in the Enzymatic Cycle of an Extradiol Dioxygenase. J. Am. Chem. Soc. 2008, 130, 14465-14467.
20. Moomaw, E. W.; Angerhofer, A.; Moussatche, P.; Ozarowski, A.; García-Rubio, I.; Richards, N. G. J., Metal Dependence of Oxalate Decarboxylase Activity. Biochemistry 2009, 48, 6116-6125.
21. Campomanes, P.; Kellett, W. F.; Easthon, L. M.; Ozarowski, A.; Allen, K. N.; Angerhofer, A.; Rothlisberger, U.; Richards, N. G. J., Assigning the EPR Fine Structure Parameters of the Mn(II) Centers in Bacillus subtilis Oxalate Decarboxylase by Site-Directed Mutagenesis and DFT/MM Calculations. J. Am. Chem. Soc. 2014, 136, 2313-2323.
22. Moomaw, E. W.; Hoffer, E.; Moussatche, P.; Salerno, J. C.; Grant, M.; Immelman, B.; Uberto, R.; Ozarowski, A.; Angerhofer, A., Kinetic and Spectroscopic Studies of Bicupin Oxalate Oxidase and Putative Active Site Mutants. PLOS ONE 2013, 8, e57933.
23. Just, V. J.; Stevenson, C. E. M.; Bowater, L.; Tanner, A.; Lawson, D. M.; Bornemann, S., A Closed Conformation of Bacillus subtilis Oxalate Decarboxylase OxdC Provides Evidence for the True Identity of the Active Site. J. Biol. Chem. 2004, 279, 19867-19874.
24. Zhu, W.; Wilcoxen, J.; Britt, R. D.; Richards, N. G. J., Formation of Hexacoordinate Mn(III) in Bacillus subtilis Oxalate Decarboxylase Requires Catalytic Turnover. Biochemistry 2016, 55, 429-434.
25. Shook, R. L.; Gunderson, W. A.; Greaves, J.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S., A Monomeric MnIII−Peroxo Complex Derived Directly from Dioxygen. J. Am. Chem. Soc. 2008, 130, 8888-8889.
26. Lee, C.-M.; Chuo, C.-H.; Chen, C.-H.; Hu, C.-C.; Chiang, M.-H.; Tseng, Y.-J.; Hu, C.-H.; Lee, G.-H., Structural and Spectroscopic Characterization of a Monomeric Side-On Manganese(IV) Peroxo Complex. Angew. Chem. Int. Ed. 2012, 51, 5427-5430.
27. Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W., Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex. Nature Communications 2014, 5, 5440.
28. Colmer, H. E.; Howcroft, A. W.; Jackson, T. A., Formation, Characterization, and O–O Bond Activation of a Peroxomanganese(III) Complex Supported by a Cross-Clamped Cyclam Ligand. Inorg. Chem. 2016, 55, 2055-2069.
29. Barman, P.; Cantú Reinhard, F. G.; Bagha, U. K.; Kumar, D.; Sastri, C. V.; de Visser, S. P., Hydrogen by Deuterium Substitution in an Aldehyde Tunes the Regioselectivity by a Nonheme Manganese(III)–Peroxo Complex. Angew. Chem. Int. Ed. 2019, 58, 10639-10643.
30. Barman, P.; Upadhyay, P.; Faponle, A. S.; Kumar, J.; Nag, S. S.; Kumar, D.; Sastri, C. V.; de Visser, S. P., Deformylation Reaction by a Nonheme Manganese(III)–Peroxo Complex via Initial Hydrogen-Atom Abstraction. Angew. Chem. Int. Ed. 2016, 55, 11091-11095.
31. Chiang, C.-W.; Kleespies, S. T.; Stout, H. D.; Meier, K. K.; Li, P.-Y.; Bominaar, E. L.; Que, L.; Münck, E.; Lee, W.-Z., Characterization of a Paramagnetic Mononuclear Nonheme Iron-Superoxo Complex. J. Am. Chem. Soc. 2014, 136, 10846-10849.
32. Oddon, F.; Chiba, Y.; Nakazawa, J.; Ohta, T.; Ogura, T.; Hikichi, S., Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew. Chem. Int. Ed. 2015, 54, 7336-7339.
33. Blakely, M. N.; Dedushko, M. A.; Yan Poon, P. C.; Villar-Acevedo, G.; Kovacs, J. A., Formation of a Reactive, Alkyl Thiolate-Ligated FeIII-Superoxo Intermediate Derived from Dioxygen. J. Am. Chem. Soc. 2019, 141, 1867-1870.
34. Liu, L.-L.; Li, H.-X.; Wan, L.-M.; Ren, Z.-G.; Wang, H.-F.; Lang, J.-P., A Mn(iii)–superoxo complex of a zwitterionic calix[4]arene with an unprecedented linear end-on Mn(iii)–O2 arrangement and good catalytic performance for alkene epoxidation. Chem. Commun. 2011, 47, 11146-11148.
35. Lin, Y.-H.; Cramer, H. H.; van Gastel, M.; Tsai, Y.-H.; Chu, C.-Y.; Kuo, T.-S.; Lee, I. R.; Ye, S.; Bill, E.; Lee, W.-Z., Mononuclear Manganese(III) Superoxo Complexes: Synthesis, Characterization, and Reactivity. Inorg. Chem. 2019, 58, 9756-9765.
36. Coggins, M. K.; Sun, X.; Kwak, Y.; Solomon, E. I.; Rybak-Akimova, E.; Kovacs, J. A., Characterization of Metastable Intermediates Formed in the Reaction between a Mn(II) Complex and Dioxygen, Including a Crystallographic Structure of a Binuclear Mn(III)–Peroxo Species. J. Am. Chem. Soc. 2013, 135, 5631-5640.
37. Lewis, E. A.; Tolman, W. B., Reactivity of Dioxygen−Copper Systems. Chem. Rev. 2004, 104, 1047-1076.
38. Yan Poon, P. C.; Dedushko, M. A.; Sun, X.; Yang, G.; Toledo, S.; Hayes, E. C.; Johansen, A.; Piquette, M. C.; Rees, J. A.; Stoll, S.; Rybak-Akimova, E.; Kovacs, J. A., How Metal Ion Lewis Acidity and Steric Properties Influence the Barrier to Dioxygen Binding, Peroxo O–O Bond Cleavage, and Reactivity. J. Am. Chem. Soc. 2019, 141, 15046-15057.
39. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C., Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349-1356.
40. Ghosh, K.; Tyagi, N.; Kumar, P.; Singh, U. P.; Goel, N., Stabilization of Mn(II) and Mn(III) in mononuclear complexes derived from tridentate ligands with N2O donors: Synthesis, crystal structure, superoxide dismutase activity and DNA interaction studies. J. Inorg. Biochem. 2010, 104, 9-18.
41. 朱其翊, 含錳超氧化物歧化酶之N3O2五牙配位基擬態化合物的合成、性質及超氧化物反應性探討. 國立臺灣師範大學化學研究所碩士論文2013.
42. 蔡懿宣, 三價錳氫氧及過氧烷錯合物之鑑定與反應性. 國立臺灣師範大學化學研究所碩士論文 2019.
43. Lin, Y.-H.; Kutin, Y.; van Gastel, M.; Bill, E.; Schnegg, A.; Ye, S.; Lee, W.-Z., A Manganese(IV)-Hydroperoxo Intermediate Generated by Protonation of the Corresponding Manganese(III)-Superoxo Complex. J. Am. Chem. Soc. 2020, 142, 10255-10260.
44. Leto, D. F.; Massie, A. A.; Colmer, H. E.; Jackson, T. A., X-Band Electron Paramagnetic Resonance Comparison of Mononuclear MnIV-oxo and MnIV-hydroxo Complexes and Quantum Chemical Investigation of MnIV Zero-Field Splitting. Inorg. Chem. 2016, 55, 3272-3282.
45. Gupta, R.; Taguchi, T.; Borovik, A. S.; Hendrich, M. P., Characterization of Monomeric MnII/III/IV–Hydroxo Complexes from X- and Q-Band Dual Mode Electron Paramagnetic Resonance (EPR) Spectroscopy. Inorg. Chem. 2013, 52, 12568-12575.
46. Gallagher, A. T.; Lee, J. Y.; Kathiresan, V.; Anderson, J. S.; Hoffman, B. M.; Harris, T. D., A structurally-characterized peroxomanganese(iv) porphyrin from reversible O2 binding within a metal–organic framework. Chemical Science 2018, 9, 1596-1603.
47. Cho, J.; Sarangi, R.; Nam, W., Mononuclear Metal–O2 Complexes Bearing Macrocyclic N-Tetramethylated Cyclam Ligands. Acc. Chem. Res. 2012, 45, 1321-1330.
48. Annaraj, J.; Cho, J.; Lee, Y.-M.; Kim, S. Y.; Latifi, R.; de Visser, S. P.; Nam, W., Structural Characterization and Remarkable Axial Ligand Effect on the Nucleophilic Reactivity of a Nonheme Manganese(III)–Peroxo Complex. Angew. Chem. Int. Ed. 2009, 48, 4150-4153.
49. Du, J.; Miao, C.; Xia, C.; Sun, W., A novel manganese(III)-peroxo complex bearing a proline-derived pentadentate aminobenzimidazole ligand. Chin. Chem. Lett. 2018, 29, 1869-1871.
50. Seo, M. S.; Kim, J. Y.; Annaraj, J.; Kim, Y.; Lee, Y.-M.; Kim, S.-J.; Kim, J.; Nam, W., [Mn(tmc)(O2)]+: A Side-On Peroxido Manganese(III) Complex Bearing a Non-Heme Ligand. Angew. Chem. Int. Ed. 2007, 46, 377-380.
51. Lee, C.-M.; Sankaralingam, M.; Chuo, C.-H.; Tseng, T.-H.; Chen, P. P. Y.; Chiang, M.-H.; Li, X.-X.; Lee, Y.-M.; Nam, W., A Mn(iv)–peroxo complex in the reactions with proton donors. Dalton Transactions 2019, 48, 5203-5213.