簡易檢索 / 詳目顯示

研究生: 蔡淳名
Tsai, Chun-Ming
論文名稱: 應用於鈉/鋰二氧化碳電池之釕複合奈米碳管陰極觸媒
Cathode Catalysts of Ruthenium Composite Carbon Nanotubes for Sodium / Lithium Carbon Dioxide Battery
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 97
中文關鍵詞: 鈉二氧化碳電池鋰二氧化碳電池陰極催化觸媒釕奈米粒子新能源材料多壁奈米碳管
英文關鍵詞: Sodium carbon dioxide battery, Lithium carbon dioxide battery, Cathode catalyst materials, Ruthenium nanoparticle, Multi-walled carbon nanotubes, Energy materials
DOI URL: http://doi.org/10.6345/NTNU202001038
論文種類: 學術論文
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自18世紀工業革命,人類生活型態巨大改變。人們對於能源需求與日俱增,然以傳統石化燃料作為能源來源,於產生能源過程中製造大量之二氧化碳等溫室氣體,致使全球暖化問題。又因石化燃料枯竭危機,促使綠色替代能源之相關研究蓬勃發展。電池為目前廣泛應用之儲能系統,鈉/鋰二氧化碳電池(sodium/lithium carbon dioxide battery)因具備重量輕、高能量密度與高比電容量之優勢,可解決溫室氣體排放之問題,且鈉金屬具低成本與地球含量高等優點,已成為極具潛力之儲能裝置。
    本研究乃合成釕奈米粒子複合多壁碳奈米管(Multi-walled carbon nanotubes)作為鈉/鋰二氧化碳電池觸媒陰極。藉高活性之釕奈米粒子修飾多壁奈米碳管,奈米碳管具良好之熱穩定性與導電性質,且高體表面積之特性助於儲存放電產物。釕奈米粒子於充電時有效催化放電產物之分解,改善其循環壽命與過電位。本研究以鈉金屬與鋰金屬作為電池陽極材料並比較電池效能,因鈉成本低廉且產量高,故本研究期望鈉金屬取代成本高之鋰金屬。本研究合成之多壁碳奈米管修飾釕奈米粒子(Ru/MWCNTs)作為鈉/鋰二氧化碳電池之陰極觸媒,除有效分解沉積於陰極上之放電產物進而提高循環壽命,亦於鈉/鋰二氧化碳電池比較中證實鈉二氧化碳電池之可行性與其效能不亞於鋰二氧化碳電池,可知鈉二氧化碳電池極具發展與研究之潛力,其為低成本與高理論能量密度之新一代綠能儲能系統。

    Since the industrial revolution in the 18th century, people's demand for energy is increasing day by day, but traditionally using fossil fuel as an energy source to produce a large number of greenhouse gases such as carbon emissions in the process of generating energy has caused the global warming problem to be imminent and the crisis of depletion of petrochemical fuel. Promote the vigorous development of research related to green alternative energy. The battery is currently the widely used energy storage system. Sodium/lithium carbon dioxide battery has the advantages of a lightweight, high energy density and high specific capacity. To solve the problem of greenhouse gas emissions, sodium metal has become a potential energy storage device in recent years because of its low cost and high earth content.
    The synthesis of ruthenium nanoparticles composites multi-wall carbon nanotubes as a sodium/lithium carbon dioxide battery catalyst. Multi-walled carbon nanotubes are modified with highly active ruthenium nanoparticles. The carbon nanotubes have good thermal stability and electrical conductivity, and the high specific surface area facilitates the deposition of stored discharge products. Ruthenium nanoparticles effectively catalyze the decomposition of discharge products during charging, improving their cycle life, and overpotential phenomena. This project also used lithium metal and sodium metal as battery anode materials and compared battery performance. Due to the low cost and high yield of sodium, we expect that sodium metal will gradually replace the high-cost lithium metal. The multi-walled carbon nanotubes modified ruthenium nanoparticles (Ru/MWCNTs) synthesized in this project are used as cathode catalysts for sodium/lithium carbon dioxide batteries. In addition to effectively decomposing the discharge products deposited on the cathode to improve cycle life, also used in sodium/the comparison of lithium carbon dioxide batteries proves that the feasibility and performance of sodium carbon dioxide batteries are no less than that of lithium carbon dioxide batteries. It can be seen that sodium carbon dioxide batteries have great potential for development and research, and provide low-cost and new-generation green energy storage systems with high theoretical density.

    致謝I 摘要II 目錄V 圖目錄IX 表目錄XIII 第一章 緒論 1 1.1鋰離子電池 2 1.2鈉/鋰空氣電池 4 1.2.1鋰二氧化碳電池 5 1.2.1.1鋰二氧化碳電池之工作原理 5 1.3 鋰二氧化碳電池充放電機制探討 7 1.3.1放電機制之探討 7 1.3.2充電機制之探討 10 1.4 鋰空氣電池之問題 13 1.5鈉二氧化碳電池 16 1.5.1鈉二氧化碳電池之工作原理 16 1.6鈉二氧化碳電池之充放電機制探討 17 1.6.1放電機制之探討 17 1.6.2充電機制之探討 19 1.7鈉/鋰二氧化碳電池種類 21 1.7.1 有機體系鈉/鋰二氧化碳電池 21 1.7.1.1 有機體系鈉/鋰二氧化碳電池溶劑種類 22 1.7.2混合體系鈉/鋰二氧化碳電池 24 1.7.3準固態體系鈉/鋰二氧化碳電池 24 1.7.4全固態體系鈉/鋰二氧化碳電池 24 1.8常用之鈉/鋰二氧化碳電池陰極觸媒材料 25 1.8.1碳材料 25 1.8.1.1科琴黑 25 1.8.1.2 Super P 25 1.8.1.3石墨烯 25 1.8.1.4奈米碳管 26 1.8.1.5碳奈米纖維 27 1.8.2貴金屬材料 27 1.8.2.1鉑 28 1.8.2.2銥 28 1.8.2.3釕 29 1.8.3 本研究相關之文獻地圖 30 1.8.3.1 鋰二氧化碳電池之釕奈米粒子觸媒材料總結整理 30 1.8.3.2 鈉二氧化碳電池之釕奈米粒子觸媒材料總結整理 32 1.9研究動機與目的 32 第二章 實驗步驟與儀器分析原理 35 2.1 釕奈米粒子修飾多壁奈米碳管複合材料之合成 36 2.1.1配製釕奈米粒子複合奈米碳管之複合材料 37 2.1.2陰極觸媒漿料與電極配製 38 2.1.3 鈕扣型電池組裝 39 2.1.4 鈉/鋰二氧化碳電池測試系統 41 2.2 材料結構鑑定 42 2.2.1 X光繞射儀(X-ray diffraction; XRD) 42 2.2.2掃描式電子顯微鏡(scanning electron microscope; SEM) 44 2.2.3穿透式電子顯微鏡(transmission electron microscope; TEM) 45 2.2.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 47 2.2.5 X光吸收光譜(X-ray absorption spectroscopy; XAS) 49 2.2.6 X光吸收光譜之近邊緣結構(X-ray absorption near-edge structure; XANES) 50 2.2.7 X光吸收光譜之延伸區精細結構(extended X-ray absorption fine structure;EXAFS) 51 2.2.8 拉曼光譜儀(Raman spectroscopy) 52 2.2.9 電化學交流阻抗法(electrochemical impedance spectrum; EIS) 55 2.2.10 循環伏安法(cyclic voltammetry; CV) 57 2.2.11 充放電測試儀 58 第三章 結果與討論 59 3.1釕奈米粒子/奈米碳管複合材料與其相關鑑定 59 3.1.1 XRD鑑定分析 59 3.1.2 SEM表面形貌分析 60 3.1.3 TEM結構分析 62 3.1.4 XPS分析 63 3.1.5 XANES鑑定 64 3.1.6 EXAFS鑑定 65 3.2釕奈米粒子複合奈米碳管之電性分析 67 3.2.1循環伏安法(CV) 67 3.2.2電化學阻抗譜圖 (EIS) 69 3.2.3 充放電分析 73 3.2.3.1最大充放電測試 73 3.2.3.2循環穩定性測試 75 3.3 釕奈米粒子複合奈米碳管材料之充放電機制探討 77 3.3.1 ex-situ XRD放電產物鑑定 78 3.3.2 SEM產物形貌分析 81 3.3.3 Raman放電產物鑑定 83 3.3.4 XPS表面產物鑑定 84 3.3.5 XANES催化觸媒鑑定 87 3.3.6 EXAFS催化觸媒鑑定 88 第四章 結論 90 未來展望 91 參考文獻 92

    [1]Songolzadeh, M.; Soleimani, M.; Takht Ravanchi, M.; Songolzadeh, R., Carbon Dioxide Separation From Flue Gases: A Technological Review Emphasizing Reduction In Greenhouse Gas Emissions. Sci. World J. 2014, 214, 1-34.
    [2]Kang, B.; Ceder, G., Battery Materials for Ultrafast Charging and Discharging. Nature 2009, 458, 190-193.
    [3]Cheng, F.; Wang, H.; Zhu, Z.; Wang, Y.; Zhang, T.; Tao, Z.; Chen, J., Porous LiMn2O4 Nanorods with Durable High-Rate Capability for Rechargeable Li-Ion Batteries. Energy Environ. Sci. 2011, 4, 2338-2360.
    [4]Cao, X.; Tan, C.; Sindoro, M.; Zhang, H., Hybrid Micro-/Nano-Structures Derived from Metal-Organic Frameworks: Preparation and Applications in Energy Storage and Conversion. Chem. Soc. Rev. 2017, 46, 2660-2677.
    [5]Zhou, J.; Qin, J.; Zhang, X.; Shi, C.; Liu, E.; Li, J.; Zhao, N.; He, C., 2D Space-Confined Synthesis of Few-Layer MoS2 Anchored on Carbon Nanosheet For Lithium-Ion Battery Anode. ACS Nano 2015, 9, 3837-3848.
    [6]Balaish, M.; Kraytsberg, A.; Ein-Eli, Y., A Critical Review on Lithium-Air Battery Electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 2801-2822.
    [7]Abraham, K. M., A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1.
    [8]Hu, X.; Sun, J.; Li, Z.; Zhao, Q.; Chen, C.; Chen, J., Rechargeable Room-Temperature Na-CO2 Batteries. Angew. Chem. Int. Ed. 2016, 55, 6482-6486.
    [9]Whittingham, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126-1127.
    [10]Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. 1980, 15, 783-789.
    [11]Manthiram, A.; Kim, J., Low Temperature Synthesis of Insertion Oxides for Lithium Batteries. Chem. Mater. 1998, 10, 2895-2909.
    [12]Ding, Y.; Cano, Z. P.; Yu, A.; Lu, J.; Chen, Z., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energ. Rev. 2019, 2, 1-28.
    [13]Wang, L.; Zhang, Y.; Liu, Z.; Guo, L.; Peng, Z., Understanding Oxygen Electrochemistry in Aprotic Li-O2 Batteries. Green Energy Environ. 2017, 2, 186-203.
    [14]Liu, B.; Sun, Y.; Liu, L.; Chen, J.; Yang, B.; Xu, S.; Yan, X., Recent Advances in Understanding Li–CO2 Electrochemistry. Energy Environ. Sci. 2019, 12, 887-922.
    [15]Luntz, A. C.; McCloskey, B. D., Nonaqueous Li–Air Batteries: A Status Report. Chem. Rev. 2014, 114, 11721-11750.
    [16]Xu, S.; Das, S. K.; Archer, L. A., The Li–CO2 Battery: A Novel Method for CO2 Capture and Utilization. RSC Adv. 2013, 3, 6656-6660.
    [17]Németh, K.; Srajer, G., CO2/Oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal–Air Type Rechargeable Batteries. RSC Adv. 2014, 4, 1879-1885.
    [18]Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J., Mo2C/CNT: An Efficient Catalyst for Rechargeable Li-CO2 Batteries. Adv. Funct. Mater. 2017, 27, 1700564.
    [19]Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhou, H., A Reversible Lithium–CO2 Battery with Ru Nanoparticles as A Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972-978.
    [20]Takechi, K.; Shiga, T.; Asaoka, T., A Li-O2/CO2 Battery. Chem. Commun. 2011, 47, 3463-3465.
    [21]Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A., 3rd; Kim, H.; Kang, K., Toward A Lithium-"Air" Battery: the Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell. J. Am. Chem. Soc. 2013, 135, 9733-9742.
    [22]Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C.; Tarascon, J. M., Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li-O2/CO2 Batteries by Controlling the Superoxide Intermediate. J. Phys. Chem. Lett. 2017, 8, 214-222.
    [23]Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A., Rechargeability of Li-Air Cathodes Pre-Filled with Discharge Products Using An Ether-Based Electrolyte Solution: Implications for Cycle-Life of Li-air Cells. Phys. Chem. Chem. Phys. 2013, 15, 11478-11493.
    [24]Qiao, Y.; Yi, J.; Wu, S.; Liu, Y.; Yang, S.; He, P.; Zhou, H., Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage. Joule 2017, 1, 359-370.
    [25]Yang, S.; He, P.; Zhou, H., Exploring the Electrochemical Reaction Mechanism of Carbonate Oxidation in Li–Air/CO2 Battery Through Tracing Missing Oxygen. Energy Environ Sci. 2016, 9, 1650-1654.
    [26]Lu, Y.-C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y., Lithium–Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance. Energy Environ. Sci. 2013, 6, 750-768.
    [27]Wagner, F. T.; Lakshmanan, B.; Mathias, M. F., Electrochemistry and the Future of the Automobile. J. Phys. Chem. Lett. 2010, 1, 2204-2219.
    [28]Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A., A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 2011, 159, R1-R30.
    [29]Yoshimatsu, I.; Hirai, T.; Yamaki, J. i., Lithium Electrode Morphology during Cycling in Lithium Cells. J. Electrochem. Soc. 1988, 135, 2422-2427.
    [30]Ozawa, K., Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: the LiCoO2/C System. Solid State Ion. 1994, 69, 212-221.
    [31]Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L., Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. Adv. Energy Mater. 2018, 8, 1-49.
    [32]Hwang, J. Y.; Myung, S. T.; Sun, Y. K., Sodium-Ion Batteries: Present and Future. Chem. Soc. Rev. 2017, 46, 3529-3614.
    [33]Zu, C.-X.; Li, H., Thermodynamic Analysis on Energy Densities of Batteries. Energy Environ. Sci. 2011, 4, 2614-2624.
    [34]Pan, H.; Hu, Y.-S.; Chen, L., Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage. Energy Environ. Sci. 2013, 6, 2338-2360.
    [35]Das, S. K.; Xu, S.; Archer, L. A., Carbon Dioxide Assist for Non-Aqueous Sodium–Oxygen Batteries. Electrochem. Commun. 2013, 27, 59-62.
    [36]Wadhawan, J. D.; Welford, P. J.; McPeak, H. B.; Hahn, C. E.; Compton, R. G., The Simultaneous Voltammetric Determination and Detection of Oxygen and Carbon Dioxide: A Study of the Kinetics of the Reaction between Superoxide and Carbon Dioxide in Non-Aqueous Media Using Membrane-Free Gold Disc Microelectrodes. Sens. Actuators B Chem. 2003, 88, 40-52.
    [37]Ortiz, R.; Márquez, O.; Márquez, J.; Gutiérrez, C., FTIR Spectroscopy Study of the Electrochemical Reduction of CO2 on Various Metal Electrodes in Methanol. J. Electroanal. Chem. 1995, 390, 99-107.
    [38]Brame Jr, E. G.; Cohen, S.; Margrave, J. L.; Meloche, V. W., Infra-Red Spectra of Inorganic Solids—I: Peroxides, Peroxide Hydrates, and Superoxides. J. Inorg. Nucl. Chem. 1957, 4, 90-92.
    [39]Xu, S.; Lu, Y.; Wang, H.; Abruña, H. D.; Archer, L. A., A Rechargeable Na–CO2/O2 Battery Enabled by Stable Nanoparticle Hybrid Electrolytes. J. Mater. Chem. A 2014, 2, 17723-17729.
    [40]Kim, J.; Lim, H.-D.; Gwon, H.; Kang, K., Sodium–Oxygen Batteries with Alkyl-Carbonate and Ether Based Electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 3623-3629.
    [41]Sun, Q.; Yang, Y.; Fu, Z.-W., Electrochemical Properties of Room Temperature Sodium–Air Batteries with Non-Aqueous Electrolyte. Electrochem. Commun. 2012, 16, 22-25.
    [42]Wen, Z.; Shen, C.; Lu, Y., Air Electrode for the Lithium–Air Batteries: Materials and Structure Designs. ChemPlusChem 2015, 80, 270-287.
    [43]Imanishi, N.; Yamamoto, O., Rechargeable Lithium–Air Batteries: Characteristics and Prospects. Appl. Mater. Today 2014, 17, 24-30.
    [44]Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G., The Lithium–Oxygen Battery with Ether‐Based Electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609-8613.
    [45]Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N., Lithium-Air Batteries Using Hydrophobic Room Temperature Ionic Liquid Electrolyte. J. Power Sources 2005, 146, 766-769.
    [46]Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G., Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040-8047.
    [47]He, P.; Zhang, T.; Jiang, J.; Zhou, H., Lithium–Air Batteries with Hybrid Electrolytes. J. Phys. Chem. Lett. 2016, 7, 1267-1280.
    [48]Wang, X. G.; Wang, C.; Xie, Z.; Zhang, X.; Chen, Y.; Wu, D.; Zhou, Z., Improving Electrochemical Performances of Rechargeable Li−CO2 Batteries with an Electrolyte Redox Mediator. ChemElectroChem 2017, 4, 2145-2149.
    [49]Zhang, Z.; Zhang, Q.; Chen, Y.; Bao, J.; Zhou, X.; Xie, Z.; Wei, J.; Zhou, Z., The First Introduction of Graphene to Rechargeable Li–CO2 Batteries. Angew. Chem. Int. Ed. 2015, 54, 6550-6553.
    [50]Hu, X.; Li, Z.; Zhao, Y.; Sun, J.; Zhao, Q.; Wang, J.; Tao, Z.; Chen, J., Quasi–Solid State Rechargeable Na-CO2 Batteries With Reduced Graphene Oxide Na Anodes. Sci. Adv. 2017, 3, 1-7.
    [51]Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y., A Rechargeable Li‐CO2 Battery with A Gel Polymer Electrolyte. Angew. Chem. Int. Ed. 2017, 56, 9126-9130.
    [52]Doshi, J.; Reneker, D. H., Electrospinning Process and Applications of Electrospun Fibers. J. Electrost. 1993, 151-160.
    [53]Wang, C.; Zhang, Q.; Zhang, X.; Wang, X. G.; Xie, Z.; Zhou, Z., Fabricating Ir/C Nanofiber Networks as Free‐Standing Air Cathodes for Rechargeable Li‐CO2 Batteries. Small 2018, 14, 1800641.
    [54]Hasché, F.; Oezaslan, M.; Strasser, P., Activity, Stability and Degradation of Multi Walled Carbon Nanotube (MWCNT) Supported Pt Fuel Cell Electrocatalysts. Phys. Chem. Chem. Phys. 2010, 12, 15251-15258.
    [55]Lu, Y.C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y., Platinum−Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium−Air Batteries. J. Am. Chem. Soc. 2010, 132, 12170-12171.
    [56]Guo, L.; Li, B.; Thirumal, V.; Song, J., Advanced Rechargeable Na–CO2 Batteries Enabled by a Ruthenium@ Porous Carbon Composite Cathode with Enhanced Na2CO3 Reversibility. Chem. Comm. 2019, 55, 7946-7949.
    [57]Guo, Z.; Li, J.; Qi, H.; Sun, X.; Li, H.; Tamirat, A. G.; Liu, J.; Wang, Y.; Wang, L., A Highly Reversible Long‐Life Li–CO2 Battery with a RuP2‐Based Catalytic Cathode. Small 2019, 15, 1803246.
    [58]Zhang, Z.; Yang, C.; Wu, S.; Wang, A.; Zhao, L.; Zhai, D.; Ren, B.; Cao, K.; Zhou, Z., Exploiting Synergistic Effect by Integrating Ruthenium–Copper Nanoparticles Highly Co‐Dispersed on Graphene as Efficient Air Cathodes for Li–CO2 Batteries. Adv. Energy Mater. 2019, 9, 1802805.
    [59]Qiao, Y.; Xu, S.; Liu, Y.; Dai, J.; Xie, H.; Yao, Y.; Mu, X.; Chen, C.; Kline, D. J.; Hitz, E. M., Transient, In Situ Synthesis of Ultrafine Ruthenium Nanoparticles for A High-Rate Li–CO2 Battery. Energy Environ. Sci. 2019, 12, 1100-1107.
    [60]Xu, S.; Chen, C.; Kuang, Y.; Song, J.; Gan, W.; Liu, B.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L., Flexible Lithium–CO2 Battery with Ultrahigh Capacity and Stable Cycling. Energy Environ. Sci. 2018, 11, 3231-3237.
    [61]Zhao, H.; Li, D.; Li, H.; Tamirat, A. G.; Song, X.; Zhang, Z.; Wang, Y.; Guo, Z.; Wang, L.; Feng, S., Ru Nanosheet Catalyst Supported by Three-Dimensional Nickel Foam as a Binder-Free Cathode for Li–CO2 Batteries. Electrochim. Acta 2019, 299, 592-599.
    [62]Chen, C.-J.; Yang, J.-J.; Chen, C.-H.; Wei, D.-H.; Hu, S.-F.; Liu, R.-S., Improvement of Lithium Anode Deterioration for Ameliorating Cyclabilities of Non-Aqueous Li–CO2 Batteries. Nanoscale 2020, 12, 8385-8396.
    [63]Bie, S.; Du, M.; He, W.; Zhang, H.; Yu, Z.; Liu, J.; Liu, M.; Yan, W.; Zhou, L.; Zou, Z., Carbon Nanotube@RuO2 as a High Performance Catalyst for Li–CO2 Batteries. ACS Appl. Mater. Interfaces 2019, 11, 5146-5151.
    [64]Jin, Y.; Chen, F.; Wang, J., Achieving Low Charge Overpotential in a Li-CO2 Battery with Bimetallic RuCo Nanoalloy Decorated Carbon Nanofiber Cathodes. ACS Sustain. Chem. Eng. 2020, 8, 2783-2792.

    無法下載圖示 電子全文延後公開
    2025/08/20
    QR CODE