簡易檢索 / 詳目顯示

研究生: 吳彥儒
Wu, Yan-Ru
論文名稱: 應用於音頻之三角積分調變器的設計與實現
The Design and Implementation of Delta-Sigma Modulators for Audio-Band Application
指導教授: 郭建宏
Kuo, Chien-Hung
口試委員: 陳建中
Chen, Chien-Chung
黃育賢
Hwang, Yuh-Shyan
郭建宏
Kuo, Chien-Hung
口試日期: 2023/07/07
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 類比數位轉換器三角積分調變器逐次逼近式類比數位轉換器多級雜訊移頻
英文關鍵詞: Analog-to-Digital Converters, Delta-Sigma Modulators, SAR ADC, Multi-Stage Noise-Shaping (MASH)
DOI URL: http://doi.org/10.6345/NTNU202301277
論文種類: 學術論文
相關次數: 點閱:209下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的科技日新月異,在類比數位轉換器(Analog-to-Digital Converter,ADC)晶片的音頻應用(audio-band application)中不但對於高解析度有所要求,對於低功率的需求也逐漸受到重視。在這項應用中以三角積分調變器(Delta-Sigma Modulator,ΔΣM)為主,因其解析度最高,但是相對上功率消耗也是最高的,如何在不影響電路效能的情形下最佳化三角積分調變器的功率消耗是本篇論文的核心目標。
    本論文中,提出了兩個可以在不影響電路效能的情形下最佳化三角積分調變器的功率消耗的電路,分別為一個使用NS SAR 量化器之多重迴路三角積分調變器和利用一顆反相器基底積分器實現的一個二階雙路徑三角積分調變器,皆以UMC 180nm CMOS製程實現,供應電壓均使用1.4 V。前者的核心電路佈局模擬SNDR值為88.78 dB,總功率消耗為128 uW,後者的核心電路佈局模擬SNDR值為84.75 dB,總功率消耗為48 uW。
    兩者的共通點是皆採用了逐次逼近式類比數位轉換器(Successive Approximation Register ADC,SAR ADC)做為量化器(Quantizer),以及雜訊移頻(Noise-Shaping,NS)技術。前者主要透過多級雜訊移頻(Multi-Stage Noise-Shaping,MASH)架構和數位濾波器(Digital Filter)以達到消除多餘雜訊的效果,後者主要藉由一個反相器基底積分器搭配雙路徑架構來實現一個二階雙路徑之反相器基底積分器,對電路元件的利用效率最佳化。

    In the realm of rapidly evolving technology, there is an increasing emphasis on both high resolution and low power consumption in audio-band applications of Analog-to-Digital Converter (ADC) chips. Delta-Sigma Modulators (ΔΣMs) are commonly employed in these applications for their exceptional resolution; however, they also exhibit a substantial power consumption. The core objective of this paper is to optimize the power consumption of ΔΣMs without compromising the circuit performance.
    In this paper, two circuits are proposed to optimize the power consumption of ΔΣMs while maintaining the performance. The first proposed circuit is a noise-shaping SAR-assisted MASH ΔΣM and the second proposed circuit is a second-order pseudo-two-path inverter-based ΔΣM. Both circuits are implemented using the UMC 180nm CMOS process with the supply voltage of 1.4V. A simulated SNDR value of 88.78 dB with a total power consumption of 128 uW is achieved by the first circuit, while the second circuit achieves a simulated SNDR value of 84.75 dB with a total power consumption of 48 uW.
    To achieve the optimization of power consumption, the employment of a quantizer in the form of a Successive Approximation Register ADC (SAR ADC) and the utilization of Noise-Shaping (NS) techniques are enabled by the proposed circuits. A Multi-Stage Noise-Shaping (MASH) architecture and digital filters are implemented by the first circuit, effectively eliminating excess noise. An inverter-based integrator with a pseudo-two-path structure is utilized by the second circuit to realize a second-order ΔΣM with only one integrator and maximize the efficiency of circuit components.

    目    錄 謝  辭 i 摘    要 ii ABSTRACT iii 目    錄 iv 表 目 錄 viii 圖 目 錄 ix 第一章  緒論 1 1.1  研究動機與背景 1 1.2  論文架構與研究方法 2 第二章  類比數位轉換器系統概論 3 2.1  前言 3 2.2  效能指標 4 2.2.1  訊號雜訊比 4 2.2.2  訊號雜訊失真比 5 2.2.3  解析度 5 2.2.4  動態範圍 5 2.2.5  無雜波干擾之動態範圍 6 2.3  量化器與量化誤差 6 2.3.1  單位元量化器 7 2.3.2  多位元量化器 8 2.3.3  量化雜訊分析 12 2.4  超取樣率 13 2.5  雜訊移頻與三角積分調變器 15 2.5.1  一階雜訊移頻 16 2.5.2  二階雜訊移頻 19 2.5.3 高階雜訊移頻 22 2.6  結論 25 第三章  電路元件設計 26 3.1  前言 26 3.2  交換電容式電路 26 3.2.1  反向積分器 27 3.2.2  非反向積分器 28 3.2.3  多輸入積分器 30 3.2.4  反相器基底積分器 32 3.3  開關電路 34 3.3.1  單一MOS開關 34 3.3.2  單一MOS開關的非理想效應分析 35 3.3.3  CMOS傳輸閘開關 36 3.3.4  靴帶式開關 37 3.4  反相器基底積分器的共模回授電路 40 3.5  比較器 40 3.5.1  比較器的誤差分析 41 3.5.2  動態比較器 42 3.6  逐次逼近式類比數位轉換器 43 3.6.1  二分搜尋演算法 44 3.6.2  SAR ADC的運作原理 44 3.6.3  真單相位時脈電路 45 3.6.4  暫存器陣列 46 3.6.5  電容式DAC回授電路 47 3.7  結論 48 第四章  使用NS SAR 量化器之多重迴路三角積分調變器 49 4.1  前言 49 4.2  具有相關電位移技術之反相器基底積分器 50 4.3  基於多重迴路架構之整合式NS SAR量化器 52 4.3.1  多重迴路架構之電路實現 52 4.3.2  NS SAR量化器 52 4.3.3  整合式NS SAR量化器 53 4.4  電路的非理想效應 56 4.4.1  熱雜訊 56 4.4.2  時脈抖動 57 4.4.3  放大器之有限增益 58 4.5  線性模型架構與模擬結果 59 4.6  電路架構與模擬結果 62 4.7  電路佈局與實現 65 4.7.1  核心電路佈局 66 4.7.2  晶片電路佈局 68 4.8  晶片量測 70 4.8.1  電路板與儀器的負載 70 4.8.2  輸入終端電路 70 4.8.3  供應電壓之穩壓電路與濾波槽電路 71 4.8.4  晶片量測環境 72 4.8.5  晶片量測結果 73 4.9  結論 75 第五章  雙路徑三角積分調變器 76 5.1  前言 76 5.2  雙路徑積分器 76 5.3  具有自我校正共模準位功能之反相器基底放大器 79 5.4  3位元的NS SAR量化器 80 5.5  線性模型架構與模擬結果 81 5.6  電路架構與模擬結果 86 5.7  電路佈局與實現 88 5.7.1  核心電路佈局 89 5.7.2  晶片電路佈局 91 5.8  晶片量測 92 5.8.1  晶片量測環境 93 5.8.2  晶片量測結果 94 5.9  結論 96 第六章  總結與未來展望 97 6.1  總結 97 6.2  未來展望 99 參 考 文 獻 101 自  傳 105 學術成就 105

    [1] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley, IEEE Press, 2008.
    [2] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
    [3] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1996.
    [4] J. Silva, U. K. Moon, J. Steensgaard, and G. C. Temes, “Wideband Low-Distortion Delta-Sigma ADC Topology,” Electron. Lett., vol. 37, pp. 737-738, Jun. 2001.
    [5] R. Schreier and G. C. Temes, Understanding Delta–Sigma Data Converters: New York: Wiley, 2004.
    [6] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309-318, Mar. 1990.
    [7] W. L. Lee and C. G. Sodini, “A Topology for Higher-Order Interpolative Coders,” in Proc. IEEE Intel. Symp. Circuits Syst., 1987, pp.459-462.
    [8] B. DelSignore, D. Kerth, N. Sooch, anf E. Swansooon, “A Monolithic 20-B Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1311-1317, Dec. 1990.
    [9] P. Ferguson, A. Ganesan, R. Adarns, S. Vincelette, R. Libert, A. Volpe, D. Andreas, A. Charpentier, and J. Dattorro, “An 18b 20KHz Dual ΣΔ A/D Converter,” in Proc. ISSCC., Feb. 1991, pp. 68-292.
    [10] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel,” A Low-Voltage MOSFET-Only ΣΔ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” in Proc. IEEE Intel. Symp. Circuits Syst., May 2001, pp. 376-379.
    [11] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp ΣΔ Modulator in Standard Digital CMOS Technology,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669 Dec. 2002.
    [12] Y. Chae and G. Han, "Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator," IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 458-472, Feb. 2009.
    [13] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” Electron. Lett., vol. 35, no. 1, pp. 8-10, Jan. 1999.
    [14] J. McCreary and P. R. Gray, “A high-speed, all-MOS successive-approximation weighted capacitor A/D conversion technique,” IEEE Int. Solid-State Circuits Conf., Feb. 1975, pp. 38–39.
    [15] W. Lai and H. C. Lee, "Design successive approximation register analog-to-digital converter with Vcm-based method for M-PAM receiver and sensor application," 2016 10th International Conference on Sensing Technology (ICST), Nanjing, 2016, pp. 1-4.
    [16] Z. Chen, M. Miyahara and A. Matsuzawa, "A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC," in Proc. IEEE Symp. VLSI Circuits, 2015, pp. C64-C65.
    [17] Y.-S. Lin, S.-J. Chang, and C.-L. Wei, “A Noise-shaping SAR Assisted MASH 2-1 Sigma-Delta Modulator,” in 2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2020, pp. 1–4.
    [18] M. Honarparvar, J. M. de la Rosa and M. Sawan, "A 0.9-V 100- μ W Feedforward Adder-Less Inverter-Based MASH ΔΣ Modulator With 91-dB Dynamic Range and 20-kHz Bandwidth," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, pp. 3675-3687, Nov. 2018.
    [19] H. Luo, Y. Han, R. C. C. Cheung, X. Liu and T. Cao, "A 0.8-V 230-µW 98-dB DR Inverter-Based ΔΣ Modulator for Audio Applications," IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2430-2441, Oct. 2013.
    [20] T. Christen, "A 15-bit 140-µW Scalable-Bandwidth Inverter-Based ΔΣ Modulator for a MEMS Microphone With Digital Output," IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1605-1614, July 2013.
    [21] B. R. Gregoire and U. Moon, "An Over-60 dB True Rail-to-Rail Performance Using Correlated Level Shifting and an Opamp With Only 30 dB Loop Gain," IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 2620-2630, Dec. 2008.
    [22] L. Qi, S. W. Sin, S. P. U, F. Maloberti, and R. P. Martins, “A 4.2-mW 77.1-dB SNDR 5-MHz BW DT 2-1 MASH and Delta; Σ Modulator with Multirate Opamp Sharing,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 64, no. 10, pp. 2641–2654, Oct.2017.
    [23] Y. Tang, X. Chen, and H. Zhu, “A 108-dB SNDR 2-1 MASH ΔΣ Modulator with First-Stage Multibit for Audio Application,” 2018 IEEE 3rd Int. Conf. Integr. Circuits Microsystems, ICICM 2018, no. 1, pp. 336–340, 2018.
    [24] A. Rezapour and H. Shamsi, “Digital noise coupled MASH delta-sigma modulator,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 1, pp. 41–45, 2019.
    [25] C. Han, A. Fahmy, and N. Maghari, “Noise-cancelling sturdy MASH delta-sigma modulator,” in Proceedings - IEEE International Symposium on Circuits and Systems, Jul. 2016, vol. 2016-July, pp. 1502–1505.
    [26] Z. Chen, M. Miyahara, and A. Matsuzawa, “A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain,” 2016 IEEE Asian Solid-State Circuits Conf. A-SSCC 2016 - Proc., pp. 309–312, 2017.
    [27] Y. Song, Y. Zhu, C. H. Chan, L. Geng, and R. P. Martins, “A 77dB SNDR 12.5MHz Bandwidth 0-1 MASH ΣΔ ADC Based on the Pipelined-SAR Structure,” in IEEE Symposium on VLSI Circuits, Digest of Technical Papers, Oct. 2018, vol. 2018-June, pp. 203–204.
    [28] S. I. Liu, C. H. Kuo, R. Y. Tsai and J. S. Wu, "A double-sampling pseudo-two-path bandpass ΔΣ modulator," in IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 276-280, Feb. 2000.
    [29] H. Ghaedrahmati, J. Zhou and R. B. Staszewski, "A 38.6-fJ/Conv.-Step Inverter-Based Continuous-Time Bandpass ΔΣ ADC in 28 nm Using Asynchronous SAR Quantizer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 9, pp. 3113-3117, Sept. 2021.
    [30] R. S. A. Kumar, N. Krishnapura and P. Banerjee, "Analysis and Design of a Discrete-Time Delta-Sigma Modulator Using a Cascoded Floating-Inverter-Based Dynamic Amplifier," in IEEE Journal of Solid-State Circuits, vol. 57, no. 11, pp. 3384-3395, Nov. 2022.
    [31] E. Eland, S. Karmakar, B. Gönen, R. van Veldhoven and K. A. A. Makinwa, "A 440-μW, 109.8-dB DR, 106.5-dB SNDR Discrete-Time Zoom ADC With a 20-kHz BW," in IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp. 1207-1215, April 2021.
    [32] B. Gönen, S. Karmakar, R. van Veldhoven and K. A. A. Makinwa, "A Continuous-Time Zoom ADC for Low-Power Audio Applications," in IEEE Journal of Solid-State Circuits, vol. 55, no. 4, pp. 1023-1031, April 2020.
    [33] L. Lv, X. Zhou, Z. Qiao and Q. Li, "Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V ΔΣ-Modulators," in IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1436-1445, May 2019.

    下載圖示
    QR CODE