簡易檢索 / 詳目顯示

研究生: 陳詩庭
Chen, Shi-Ting
論文名稱: 梅雨季西南氣流特性對台灣降水分佈影響之理想模擬研究
Idealized Simulation Study of Rainfall Distribution over Taiwan under Southwesterly Flow with Different Characteristics in the Mei-yu Season
指導教授: 王重傑
Wang, Chung-Chieh
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 梅雨季地形
英文關鍵詞: Froude Number
DOI URL: https://doi.org/10.6345/NTNU202203317
論文種類: 學術論文
相關次數: 點閱:179下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於東亞大陸和西北太平洋交界,氣候深受海陸分布差異、季節變化轉換之影響。每年5、6月的梅雨季,常受鋒面影響而出現連續性的降雨,而期間的豪大雨則往往與西南氣流密切相關。由於梅雨季期間的降水常同時與鋒面、西南氣流、不同大小尺度的大氣運動、水氣含量等均有關,其機制十分複雜,不易加以區分。因此,本研究希望單純探討西南氣流與台灣地形兩者間的效應,故選用2008年西南氣流密集觀測實驗(Southwest Monsoon Experiment,簡稱SoWMEX)在南海北部,台灣上游地區之收集之具有代表性探空觀測資料,簡化後獲得一個理想、均勻且穩定的環境背景氣流場,來進行本次西南氣流模擬實驗研究。
    本研究選取東沙島與台灣西南方研究船共6個時間探空之平均,並根據其簡化(平滑)後之垂直結構,依地轉風關係建構理想之三維環境背景流場與其他參數。實驗共設計了4種不同低層水氣含量,當水氣含量950 hPa以下相對濕度為100%、85%、70%、55%,3種風向210∘、240∘、270∘,與3種風速10、15、20 ms-1,共36種組合搭配的背景流場下,研究受真實台灣地形影響下,所造成的台灣降水之分布特徵。同時,為更進一步定量探討降水分佈關係,依地理位置將台灣分成北部、中部、南部及東部四個區域,再依地勢高低分成平原(0~250 m)、山坡(250~1000 m)及山區(1000 m以上)等三種高度分區,來討論各區域之降水分佈。另外,本研究也比較上述各環境之夫如數(Froude Number,簡稱Fr),與氣流遭遇地形之反應,及降水分佈特徵之間的關係。
    由模式分析可知,在水氣含量影響下,當相對濕度高時,CAPE高,大氣穩定度低。當相對濕度100%時,全台平均降水較高。其在偏南風時,主要降水區在東部和中部山區,隨著風向轉為偏西,主要降水則漸漸集中於中部和南部山區。而當相對濕度低時(70%、55%),CAPE低,而大氣穩定度相對較高,此時盛行風轉為偏南風時,主要降水在東部和北部山區,隨著盛行風轉向偏西時,降水逐漸改為集中在南部山區。
    在風向改變情況下,當210∘偏南風時,由於Fr皆小於0.2 ,氣流繞山而在背風面輻合產生降水,在東部及北部有明顯降水。240∘吹西南風時,氣流直接迎面受中央山脈抬升影響,是故為平均降水最多的情況,Fr 約為 0.4時,氣流有爬山的趨勢,因受地形阻擋尤其中部和南部山區有劇烈降水。270∘偏西風時,其Fr約在0.4~0.5間,因氣流受地形抬升現象明顯,且直接垂直撞向中央山脈,主要降水在中部和南部,但降水分佈有從山坡往山區延伸的趨勢。
    在風速改變的情況下,並非單純的風速越大降水就越多。在相對濕度100%時,有風速越強,降水量越多的趨勢,但在其餘相對濕度情況下,15 m s-1的降雨量反而最少。

    Taiwan is located at the boundary between East Asia and northwestern Pacific ocean; therefore, its climate is heavily affected by the land-sea distribution and seasons. Fronts usually bring continuous rain to Taiwan during the rainy season in May and June. The torrential rain happening in this period is closely connected with the southwesterly flow. Because the rainfall during rainy seasons is usually associated with fronts, southwesterly flow, different scales of atmospheric motion and the moisture contents, it’s difficult to differentiate them. Accordingly, this research hopes to focus simply on the effects between the southwesterly flow and the terrain of Taiwan. We want to simulate the southwesterly flow by simplifying the representative data gained from SoWMEX in the north of South China Sea into an ideal and stable background airflow field.
    We average sounding data at six different time from research ships from Pratas Island and Taiwan and simplify them to reconstruct the vertical structure of the atmosphere. According to the reconstruction, we construct ideal three dimensional background airflow field and other parameters by geostrophic wind relationship. The experiment designs four moisture contents in the lower atmosphere. We have 36 kinds of background airflow field, combine with (1) the 100%, 85%, 70%, 55% relative moisture when the moisture content is below 950 hPa, (2) 3 wind directions: 210° , 240° , 270° and (3) three wind speeds: 10 m/s, 15m/s, 20 m/s, to research the raindfall distribution affected by the terrains of Taiwan. Besides, to further quantitatively explore the rainfall distribution, we divide Taiwan into four regions: the north, the central, the south, and the east part. Also, we divide them based on relief into plains (0-250m), mountain slopes (250-1000m) and mountain areas (above 1000m) to discuss the rainfall distribution in each region. Additionally, this research will compare the relationships of Froude Number in each environment, short for Fr, the reactions when airflows encounter the terrains, and the rainfall distribution.
    We can know from the model analysis that (1) when the relative moisture is high, the CAPE is high and the atmospheric stability is low. (2) when the relative moisture is 100%, the rainfall in the whole Taiwan is comparatively high on average. When the wind mainly comes from the south, the main precipitation area is in eastern and central mountain areas. As the wind direction changes to the west, the main precipitation area will gradually concentrate in central and southern mountain areas. (4) when the relative moisture is low (70%, 55%), the CAPE is low and the atmospheric stability is comparatively high. When the prevailing wind comes from south, the main precipitation area is in eastern and northern mountain areas. As the wind direction changes to west, the precipitation area is concentrated in southern mountain areas.
    When the wind direction is 210° close to the south, because of Fr is smaller than 0.2, the wind will bypass the mountains and converge at the lee-ward side to precipitate where eastern and northern regions will have obvious precipitation. When the wind direction is 240°, the airflow is uplifted at the wind-ward side by the Central Range. Thus, it’s the situation that has the most precipitation on average. When the Fr is about 0.4, the airflow will ascend the mountain slopes and will be blocked by the terrains, so the central and southern mountain regions will have torrential rain. When the wind direction is 270°, its Fr is about 0.4-0.5. Because of the obvious uplifting of the air and direct collision with the Central Range, the main precipitation area is at central and southern regions. However, the rainfall distribution has a trend stretching from mountain slopes to mountain areas.
    While the wind speed changes, the precipitation and the wind speed aren’t completely positively correlated. When the relative moisture is 100%, there is a trend that while the wind speed strengthens, the amount of precipitation increases. Nonetheless, under the other conditions of relative moisture, the wind speed of 15m/s has the least amount of precipitation.

    摘要 致謝 目錄 圖表說明 第一章 前言…………………………………………………………………………………………1 第二章 研究方法 2.1、資料來源…………………………………………………………………………………………4 2.2、觀測資料選取方式及處理………………………………………………………4 2.3、模式初始場設計及製作……………………………………………………………6 2.4、模式實驗設計……………………………………………………………………………10 2.5、模式簡介……………………………………………………………………………………12 2.6、模擬結果分析方法……………………………………………………………………13 第三章 討論與分析 3.1、不同水氣含量下的降水定性與定量分析…………………………15 3.2、不同風向、風速下的降水定性與定量分析……………………16 3.3、不同水氣含量下,風場變化與區域地形平均降水之定 性定量分析…………………………………………………………………………………17 3.4、梅雨季平均風場在不同水氣情況下的降水分析…………19 3.5、定量風速情況,在不同風向和水氣含量情況下的降水 分佈特徵………………………………………………………………………………………21 3.6、極值區域分佈討論……………………………………………………………………22 3.7、Froude Number區間降水特色之分析……………………………23 3.8、梅雨季之模擬與氣候平均差異……………………………………………26 第四章 結論…………………………………………………………………………………………28 參考文獻……………………………………………………………………………………………………31 圖表………………………………………………………………………………………………………………34

    丘台光、許皓淳、林宏盛,1990:華南梅雨季中尺度對流系統的預報研究。氣象學報,36-2,117-128。
    陳泰然與林宗嵩,1997:梅雨季台灣中南部地區豪 (大) 雨之氣候特徵研究。大氣科學,25,289-306。
    陳泰然、王重傑、楊進賢,2002:台灣梅雨季對流降水之時空分布特徵。 大氣科學,30,83-97。
    陳泰然,王重傑,張智昇及王子軒,2005:梅雨季台灣中部降水與豪(大)雨之中尺度氣候特徵。大氣科學,33,49-76。
    紀水上,2006 : 台灣的梅雨。財團法人中興工程科技研究發展基金會。

    Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123, 1720-1739.
    Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of heavy rainfall occurrences in Taiwan. Wea. Forecasting, 22, 981–1002.
    Chen, C.- S., W.-C. Chen, Y.-L. Chen, P.-L. Lin, and H.-C. Lai, 2005: Investigation of orographic effects on two heavy rainfall events over southwestern Taiwan during the Mei-yu season. Atmospheric Research, 73, 101-130.
    Chen, C.- S. and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan., Mon. Wea. Rev., 131, 1323-1341.
    Chi, S. S. and G. T. J. Chen, 1989: A moisture budget analysis of two MCC case during Taiwan Mei-Yu season. Pap. Meteor. Res., 12, 143-157.
    Chen, Y.-L.and J. Feng, 2001: Numerical simulations of airflow and cloud distributions over the windward side of the island of Hawaii. Part I: The effects of trade-wind inversion. Mon. Wea. Rev., 129, 1117–1134.
    Chen, T.-C., S.-Y. Wang, W.-R. Huang, and M.-C. Yen, 2004: Variation of the east asian summer monsoon rainfall. J. Climate, 17, 744-762.
    Colle, B. A. 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J.Atmos. Sci., 61, 588-606.
    Wang, C. C.,T. J. Chen, T. C. Chen, and K.Tsuboki, 2005:A Numerical Study on the Effects of Taiwan Topography on a Convective Line during the Mei-yu Season. Mon. Wea. Rev.,133,3217–3242.
    Rasmussen, R. M., P. R. Smolarkiewicz, and J. Warner, 1989: On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci., 46, 1589–1608.
    Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625
    Smolarkiewicz, P. R., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 1872–1905.
    Yeh, H. –C., and Y. –L Chen. 1998: Characteristic of rainfall distributions over Taiwan during the Taiwan Area Mesoscale Experiment (TAMEX). J. Appl. Meteor., 37, 1457-1469.

    下載圖示
    QR CODE